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Abstract

The famous no-cloning principle has been shown recently to enable a number of uncloneable
functionalities. Here we address for the first time unkeyed quantum uncloneablity, via the study
of a complexity-theoretic tool that enables a computation, but that is natively unkeyed: quan-
tum advice. Remarkably, this is an application of the no-cloning principle in a context where
the quantum states of interest are not chosen by a random process. We show the unconditional
existence of promise problems admitting uncloneable quantum advice, and the existence of lan-
guages with uncloneable advice, assuming the feasibility of quantum copy-protecting certain
functions. Along the way, we note that state complexity classes, introduced by Rosenthal and
Yuen (ITCS 2022) — which concern the computational difficulty of synthesizing sequences of
quantum states — can be naturally generalized to obtain state cloning complexity classes. We
make initial observations on these classes, notably obtaining a result analogous to the existence
of undecidable problems.

Our proof technique establishes the existence of ingenerable sequences of finite bit strings —
essentially meaning that they cannot be generated by any uniform circuit family. We then prove
a generic result showing that the difficulty of accomplishing a computational task on uniformly
random inputs implies its difficulty on any fixed, ingenerable sequence. We use this result to
derandomize quantum cryptographic games that relate to cloning, and then incorporate a result
of Kundu and Tan (arXiv 2022) to obtain uncloneable advice. Applying this two-step process
to a monogamy-of-entanglement game yields a promise problem with uncloneable advice, and
applying it to the quantum copy-protection of pseudorandom functions with super-logarithmic
output lengths yields a language with uncloneable advice.
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1 Introduction

The no-cloning principle has been a key tenet of quantum information theory from its very early
days [Die82, WZ82].1 This principle tells us that it is, in general, impossible to create a perfect copy
of an unknown quantum state. In these works, the state is unknown in the sense that it is selected
uniformly at random from two possibilities. Follow up results, e.g.: [BH96, BDE+98, Wer98], also
give bounds on the ability to create close-but-imperfect copies of states chosen from some set.

Quantum cryptography, which seeks to leverage quantum mechanical phenomena to achieve
cryptographic goals, has greatly benefited from the no-cloning principle. Indeed, this principle
establishes a stark qualitative difference between classical information, which can be perfectly
copied, and quantum information, which cannot. In its most generic cryptographic application, it
implies that a malicious eavesdropper cannot, in general, keep a perfect transcript of the quantum
communication between two honest parties. This idea can be understood as being at the core of
the security of many quantum cryptographic schemes, such as prepare-and-measure quantum key
distribution protocols, e.g.: [BB84], and quantum money schemes, e.g.: [Wie83].

This leads to a fruitful avenue of research in quantum cryptography, occasionally known as
uncloneable cryptography, which can be summarized by the following question: Which notions from
classical information processing can be made “uncloneable” by the addition of quantum mechanics
and its no-cloning principle? One such example, as initially set-out by Aaronson [Aar09], is the task
of copy-protecting a function or a program. Quantum copy-protection, for a family of functions F ,
can be understood as the process of encoding a member f of F as a quantum state ρf such that
the following are satisfied:

• Correctness: There exists an honest procedure which, on input of ρf and x, outputs f(x).

• Security: It is infeasible to “split” ρf into two quantum systems, both allowing the evaluation
of f using any, possibly malicious, procedures.

Clearly, this is impossible to achieve in a purely classical setting but the no-cloning principle
opens the door to achieving this in the quantum setting. Since Aaronson’s introduction of this
idea, there has been a flurry of works considering the question of quantum copy-protection, e.g.:
[ALL+21, CMP20], and the closely related notion of secure software leasing, e.g.: [ALP21, BJL+21].

A key aspect of these existing constructions is that their security guarantees only hold if the
function which is encoded is chosen at random from some larger set and not disclosed to the end-
user. More formally, the family F is often understood as being the set of all maps f(k, ·) generated
from a single keyed function f : {0, 1}κ × {0, 1}d → {0, 1}c. The recipient of the copy-protected
program then receives the state ρf(k,·) for a random key k which is unknown to them. More to
the point, current approaches to quantum copy-protection cannot be applied to specific, unkeyed,
functionalities. For example, it is unclear if, using existing techniques, it would be possible to
copy-protect a specific algorithm A solving some fixed and known decision problem P .

In this work, we initiate the study of copy-protecting unkeyed functionalities, i.e.: copy-protecting
fixed functions which are not chosen at random from a larger set. We frame our main results as
the construction of uncloneable quantum advice for certain promise problems and languages. This
framing occurs naturally since advice can already be understood as a program helping a user to
solve a decision problem [Wat09].

1Diek, Wooters, and Zurek proved the no-cloning principle to argue that a proposed protocol for faster-than-light
communication [Her82] was unphysical. However, a proof by Parks [Par70] of this principle already existed in the
literature, albeit with no explicit connections to quantum information theory. See the work of Ortigoso [Ort18] for
more on the history of the no-cloning principle.
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One drawback of our work is that the resulting advice is either uncomputable, or extremely
difficult to generate. We leave addressing this issues to future work.

Organization of this work. We complete our introduction by giving a high-level overview of
our contributions in Section 1.1 and highlighting some open questions in Section 1.2. We then
proceed to review some more technical preliminaries in Section 2 and formalize our novel technical
tool, ingenerable sequences, in Section 3. We then examine cloning complexity classes in Section 4
before continuing with the main goal of this work in Section 5. In this last section, we briefly
review quantum copy-protection, formally define uncloneable advice, and show how to instantiate
this notion for one class of promise problems and one class of languages.

1.1 Contributions

We review here the main contributions in this work. We note that, for pedagogical reasons, this
high-level review does not follow the same order as our detailed presentation.

1.1.1 Uncloneable Quantum Advice

Our first conceptual contribution is the formal definition of uncloneable quantum advice.2 Defining
this notion is the content of Section 5.2.

The prototypical complexity class with quantum advice is denoted BQP/qpoly. This class
contains precisely the decision problems P = (Pyes, Pno) for which there exists a fixed sequence of
quantum states (ρn)n∈N and an efficient (polynomial-time) family of quantum circuits (Cn)n∈N such
that on input of a problem instance p ∈ P and the corresponding advice state ρ|p|, the circuit C|p|
accepts (respectively, rejects) with probability at least 2/3 if p ∈ Pyes (respectively, p ∈ Pno). The
“poly” in “qpoly” simply signifies that the advice states can contain at most a polynomial number
of qubits. The “q”, of course, stands for “quantum”. Quantum advice was first introduced in
[NY04] and this notion was further developed in [Aar05].

An important aspect of advice is that it is a fundamentally non-uniform resource and that there
is no restriction on the computational complexity of generating it. In fact, the advice states may
even encode the solutions to uncomputable problems.

In a survey of quantum complexity theory [Wat09], Watrous states that “[q]uantum advice is
a formal abstraction that addresses this question: How powerful is quantum software?” Indeed,
the circuit family (Cn)n∈N from the previous paragraph can be understood as simply outputting
the single bit which results from “running the software” encoded in the advice state ρ|p| with
the problem instance p as the input. More formally, the decision problem P naturally defines a
map Pyes ∪ Pno → {0, 1} where a problem instance p is mapped to 1 if it is an element of Pyes and
mapped to 0 if it is an element of Pno. Thus, ρn can be seen as a quantum program which allows
a holder to correctly evaluate this map on all inputs of length n.

Since we have established a close parallel between quantum advice and quantum programs, it
is natural that our definition of uncloneable quantum advice should follow closely the definition of

2There has been an ongoing implicit debate in the literature on the proper spelling of the word uncloneable. Many
authors, perhaps even a majority, prefer unclonable, i.e. they omit the e from clone before appending the -able
suffix. While the Oxford English Dictionary recognizes both clonable and cloneable (notably, neither appears in this
reference with the un- prefix), it expresses a preference for clonable [OED22]. However, to the best of our knowledge,
the earliest work in the field of quantum cryptography which uses the word uncloneable as an element of technical
terminology [Got03] keeps the e. We will continue to follow this convention.

Note that this debate is not limited to the field of quantum cryptography. See, for example, Maes’ discussion on
this subject in their textbook on physically uncloneable functions [Mae13, sec. 2.3.1].
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uncloneable quantum programs, as formalized by quantum copy-protection.
More precisely, we will say that the quantum advice states (ρn)n∈N for some decision prob-

lem P are uncloneable if no efficient adversary A can split the advice state ρn between two other
adversaries B and C such that both of them can simultaneously and correctly solve independently
sampled problem instances pB and pC of length n with more than a negligible advantage over 1

2 .
This is precisely the security requirement that a copy-protection scheme would aim to provide for
the map Pyes∪Pno → {0, 1} described above. We specify here that the problem instances pB and pC
are sampled uniformly at random among all yes instances with probability 1

2 and uniformly at ran-
dom among all no instances with probability 1

2 . Formalizing this, as we have done in Definition 29
of Section 5.2, yields a complexity class which we denote neglQP/upoly, where the “u” denotes
the fact that the advice is uncloneable. The class neglQP, for its part, is precisely the class of
problems which can be solved with negligible error in quantum polynomial time. As we now sketch,
we define neglQP/upoly and not simply BQP/upoly because it is possible that these two classes
are distinct.

By the standard amplification technique of repeating a computation a polynomial number of
times and taking a majority vote on the result, we see that neglQP = BQP. In fact, this same
argument also yields neglQP/qpoly = BQP/qpoly, provided that polynomially many copies of the
basic advice state are provided. However, it is unclear if neglQP/upoly = BQP/upoly, since the
basic amplification technique previously sketched fails to yield this equality. Indeed, if polynomially
many copies of an advice state are provided, half can be given to one party and half to another.
This breaks the uncloneability guarantee. It is also unclear if the other common amplification
technique, given by Marriot and Watrous [MW05], yields this equality between complexity classes.
Indeed, their technique does not require sending many copies of the advice state, but it does require
changing the advice and there is no a priori guarantee that the uncloneability guarantee is preserved
under this transformation.

1.1.2 Cloning Complexity Classes

As a second conceptual contribution, we define cloning complexity classes. The uncloneability
guarantee for advice states discussed in the previous section is not simply that it is impossible to
efficiently implement the transformation ρn 7→ ρn ⊗ ρn. Indeed, if it was possible to efficiently
transform the advice state ρn into σn ⊗ σn, where σn ̸= ρn but where each σn would still allow
malicious users to correctly solve the decision problem, then ρn fails to be uncloneable advice in the
sense described in Section 1.1.1. In fact, this distinction between the (in)ability to copy a quantum
state and the (in)ability of copying its underlying operational capabilities is at the source of many
interesting aspects and challenges of uncloneable cryptography.

Nonetheless, it is evident that the infeasibility of implementing the transformation ρn 7→ ρn⊗ρn
is a necessary condition for the sequence (ρn)n∈N to be uncloneable advice for some decision problem.
This naturally leads us to consider questions of the following form, with a particular interest in
cases where the answer is negative:

Given a sequence (ρn)n∈N of fixed quantum states, is there a sequence of circuits (Cn)n∈N,
satisfying some given computational constraints, such that Cn(ρn) ≈ ρn ⊗ ρn for all n?

Our insight here, covered in Section 4, is that this type of question generalizes those captured
by the state complexity classes recently studied by Metger, Rosenthal, and Yuen [RY21, MY23].
To take an explicit example of such a class presented in these works, a sequence of states (ρn)n∈N is
in the state complexity class statePSPACE if and only if there exists a uniform polynomial-space
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Figure 1: An annotated and informal representation of the space of sequences of quantum states contrasting
the difficulty to generate and to clone a given sequence. Ingenerable sequences, which are novel to this work,
are discussed in more details in Section 1.1.3.

circuit family (Cn)n∈N such that Cn outputs a state overwhelmingly close to ρn on the empty input.
The questions of the form above can be recast to form cloning complexity classes. These classes
can then be understood as the “1→ 2” generalization of the “0→ 1” state complexity classes. We
formalize this in Definition 14.

We note in passing that existing works on the no-cloning principle do not answer cloning com-
plexity questions of the form presented above as they all consider the difficulty of cloning a state
sampled at random from some larger set. Our cloning complexity classes explicitly remove this
randomness from the cloning task.

The crux of this work is not focused on cloning complexity classes, but the tools and techniques
we developed to instantiate uncloneable quantum advice do yield two interesting results on these
classes and how they relate to state complexity classes:

• There exists a sequence of fixed quantum states which cannot be generated by any uniform
circuit family, but which can be cloned by an efficient circuit family (Lemma 16).

• There exists a sequence of fixed quantum states which cannot be cloned by any uniform
circuit family, even those implementing arbitrarily large computations (Lemma 17).

These two results, with an additional generic result showing that cloning cannot be more difficult
than generating (Lemma 15) are visualized in Figure 1 which locates sequences of states with respect
to two axes: one denoting the difficulty to generate them and one denoting the difficulty to clone
them. Moreover, Lemma 17 can be interpreted as establishing a distinction between cloneable and
uncloneable sequences of states, similar to how maps can be partitioned between those which are
computable and those which are not. We leave the study of complexity-theoretic analogues (e.g.:
establishing distinctions between efficiently cloneable and uncloneable sequences) for future work.

We emphasize that the development and study of cloning complexity classes are not the main
goal of this work; however, they do offer an interesting way for us to connect some aspects of our
work with existing results. We also believe that the study of cloning complexity classes could be
of central interest and importance for further developments in uncloneable cryptography.
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1.1.3 Ingenerable Sequences of Bit Strings

The main technical tool which we develop in this work are ingenerable sequences of bit strings.
This is the content of Section 3.

In a nutshell, a sequence (sn)n∈N of bit strings sn ∈ {0, 1}∗ is computably (respectively,
exponential-time) ingenerable if every uniform (respectively, exponential-time) circuit family (Cn)n∈N
eventually always fails at generating the elements of the sequence with sufficiently large probability.
More precisely, there exists a polynomial p such that for every uniform (respectively, exponential-
time) family of quantum circuits (Cn)n∈N the quantity ⟨sn|Cn(ε) |sn⟩, where ε denotes the empty
input, is eventually strictly smaller than p(n) · 2−|sn|. We emphasize that the polynomial p is uni-
versal, in the sense that it does not depend on the circuit family (Cn)n∈N. However, the value of n
at which point the inequality begins to be satisfied can change from one circuit family to the next.

A simple counting argument demonstrates that such sequences exist unconditionally for many
desired lengths of the component strings. While computably ingenerable sequence are by their
nature uncomputable, we also show that certain exponential-time ingenerable sequence can be
computed by classical deterministic Turing machines in triple exponential time. Our counting
argument is constructive, in the sense that it uniquely describes an ingenerable sequence, even in
the case of computably ingenerable sequences where we cannot actually compute their elements.
Further, we give an explicit classical deterministic algorithm running in triple exponential time
which computes an exponential-time ingenerable sequence. These results are stated explicitly in
Theorem 9.

Note that ingenerable sequences are purely classical information and so they can trivially be
copied, this immediately yields Lemma 16 which was discussed previously in Section 1.1.2.

Ingenerable sequences are useful for us in this work due to a generic result, Theorem 10, relating
the difficulty of a computational task on uniformly random inputs to its difficulty on inputs picked
from an ingenerable sequence. Specifically, we show that if a uniform (respectively, exponential-
time) circuit family (Cn)n∈N, which takes as input a string of at least super-logarithmic and at
most polynomial length, outputs the bit 1 with negligible probability on uniformly random inputs,
then it must output 1 with negligible probability on inputs fixed from a computably (respectively,
exponential-time) ingenerable sequence (sn)n∈N. Even more technically, we show that

E
x
⟨1|Cn(x) |1⟩ = η(n) =⇒ ⟨1|Cn(sn) |1⟩ = η′(n) (1)

for two possibly distinct negligible functions η and η′, provided that (sn)n∈N is a suitable ingenerable
sequence. We emphasize here that this holds for all uniform (respectively, exponential-time) circuit
families (Cn)n∈N while the ingenerable sequence (sn)n∈N remains fixed and independent of the
circuit family.

This result allows us to derandomize certain cryptographic games related to cloning. For ex-
ample, in Theorem 13, we demonstrate the existence of a fixed sequence of Wiesner states3 which
cannot be cloned by any uniform circuit family. Specifically, we show that any uniform circuit
family attempting to copy this fixed sequence will generate states having negligible fidelity with
perfect copies of the original ones. This follows from applying our above result to the theorem of
Molina, Vidick, and Watrous showing that the ability to clone a uniformly random Wiesner state
is negligible in the length of this state [MVW13]. It then suffices to replace the uniformly random
Wiesner state with one which is determined by a computably ingenerable sequence.

3A Wiesner state, introduced to quantum cryptography in [Wie83], is any tensor product of the single-qubit

computational basis states, |0⟩ and |1⟩, or of their Hadamard conjugates, |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

. For two

strings x, θ of the same length, we let
∣∣xθ

〉
= Hθ1 |x1⟩ ⊗ · · · ⊗ Hθn |xn⟩, where H is the single-qubit Hadamard

operator, denote a Wiesner state.
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1.1.4 A Promise Problem with Uncloneable Advice from MoE games

We now present our first main result: a promise problem P = (Pyes, Pno) which admits uncloneable
advice. This is the content of Section 5.3. Recall that for a promise problem we do not require Pyes

and Pno to partition {0, 1}∗: some strings may not be an element of either sets, but we are promised
to only get problem instances from Pyes ∪ Pno.

First, we consider an exponential-time ingenerable sequence (xn)n∈N and define the set Pyes

to be all strings y where the inner product xn · y is 1. Similarly, the set Pno will be all strings
which have an inner product of 0 with the elements of the ingenerable sequence. Evidently, this
problem cannot be efficiently solved without some advice on the sequence (xn)n∈N. Indeed, if we
were able to solve this problem without any advice, we would be able to generate the ingenerable
sequence. Now, the obvious advice to directly give is xn as this would certainly allow an honest user
to solve all problem instances. However, this advice is trivially cloneable as it is a classical piece of
information. So, instead, we will give as advice the Wiesner state |xθnn ⟩ for a string θn which will
be determined shortly. We know from prior works on monogamy-of-entanglement (MoE) games
[TFKW13] that it is infeasible for an adversary to split a random Wiesner state

∣∣xθ〉 in such a way
that two parties can recover the string x if they know θ, provided that the initial splitting adversary
does not know θ. We recall and formalize this result as Lemma 36 in our detailed exposition. In
some sense, the state

∣∣xθ〉 encodes information on the string x in an uncloneable way, which is what
we need. However, three interrelated issues now arise.

The first problem is that if θn is fixed — and also xn for that matter — how do we make
sure that an adversary is not able to create copies of the fixed state |xθnn ⟩? Lemma 36 considers
the case of uniformly random Wiesner states, not a fixed sequence of such states. The solutio is
to also take θn from an exponential-time ingenerable sequence. For technical reasons, which can
be roughly understood as making sure that xn and θn are not too correlated, we will consider a
single exponential-time ingenerable sequence (sn)n∈N and parse each string sn as the concatenation
(xn, θn) of two strings of length n. We can then apply our generic derandomization theorem for
ingenerable sequences, Theorem 10 discussed previously in Section 1.1.3, to the MoE game described
above to show that no triplet of polynomial-time (or, even, exponential-time) adversaries can have
a non-negligible advantage at winning this game when challenged with the fixed state |xθnn ⟩.

Second, we have argued above that polynomial-time adversaries cannot win the MoE game of
[TFKW13] with a non-negligible probability when challenged with the fixed states |xθnn ⟩. However,
this game requires both guessing adversaries to correctly determine the complete string xn to win.
Solving the problem P only requires them to determine the inner product xn · y for some string
y, a task which may be easier. How can we bridge this gap? It suffices to use the recent result of
Kundu and Tan [KT22], formalized in Lemma 1, which states that a negligible probability of both
guessing adversaries determining xn implies a that the probability that both guessing adversaries
determining xn · y, for independent and uniformly random values of y, is at most negligibly greater
than 1

2 .
Finally, how does the honest user of the advice know θn? We have sketched above our argument

as to why the advice state |xθnn ⟩ is uncloneable, but not yet as to how it is useful. The naive way
to use this state as advice for this problem is to measure it in the θn-Wiesner basis to obtain
the string xn. This requires the knowledge of θn, something which is ingenerable, and not known
to the honest user so far. To overcome this issue, we will modify our problem to be a promise
problem. The promise is that every problem instance y is prefixed with the fixed string θ|y|. In
other words, we are giving θn as part of the problem instance. Because of this, θn is not accessible
to an adversary attempting to split the advice state before knowing a problem instance.

In summary, we start with the monogamy-of-entanglement game of [TFKW13], derandomize
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it via exponential-time ingenerable sequences, and then apply Kundu and Tan’s lemma. We then
argue that a promise problem with uncloneable advice can be extracted from this construction.

We further note that this construction can be generalized by replacing the monogamy-of-
entanglement game with any sufficiently secure uncloneable encryption scheme [BL20] where the
key kn used and the message mn to be be encoded play the role of θn and xn, respectively, and are
also determined by an ingenerable sequence. We note that the resulting construction, up to the use
of ingenerable sequences to derandomize the scheme, is conceptually similar to Kundu and Tan’s
construction of uncloneable encryption for a single-bit message with variable keys [KT22].

As a last remark, we highlight that we use exponential-time ingenerable sequences in this con-
struction. As previously mentioned, we show in this work that there exist such sequences which
can be computed in triple exponential time. Thus, if P is constructed from an exponential-time
ingenerable sequence which can be computed in triple exponential time, then P can be enumerated
by a classical deterministic Turing machine. Hence, our result is more than merely existential: we
show how to construct P in such a way that the yes and no instances can be enumerated and we
explicitly give an algorithm which does this enumeration.4

1.1.5 A Language with Uncloneable Advice from Copy-Protected PRFs

Our second main result is the construction of a language with uncloneable advice. Here, we do
require Pyes and Pno to partition {0, 1}∗. This is the content of Section 5.4 and Section 5.5

To construct this language, we leverage even more explicitly the connection between advice and
programs: Our starting building block is the assumption that it is possible to copy-protect pseudo-
random functions with super-logarithmic outputs. This can be achieved under certain assumptions
[CLLZ21].

At a high level, we can understand the problem instances of the promise problem described in
the previous section as pairs (θ, y) where the string θ was used as an “input” for the “program”
encoded by the Wiesner state

∣∣xθ〉. Evaluating a Wiesner state in this paradigm then consists of
measuring it in the θ-Wiesner basis and outputting the resulting x. The reason we obtained a
promise problem, and not a language, is that this “program” has a deterministic answer on only
one input: θ.

Copy-protected programs do not suffer this limitation of only having one “good input”. If ρf
is the copy-protected program of the function f , then evaluating ρf on any input x will yield f(x)
with high probability. Thus, we can reuse the same template as in the previous promise problem:
problem instances are pairs (x, y) where x is treated as an input to a program state ρf to obtain
a string f(x) with near certainty. We then take the inner product f(x) · y to determine if (x, y) is
an element of the language. However, since ρf can be properly evaluated on any input, unlike the
Wiesner state “program”, we need not promise that the input x is some particular well-behaved
string: it can be arbitrary. Thus, we can obtain a language, and not merely a promise problem
from this type of construction.

Here, as for our promise problem, the result of Kundu and Tan (Lemma 1) is used to relate the
difficulty of two guessers independently and simultaneously determining f(x) · y to their difficulty
of determining f(x). We also make use of exponential-time ingenerable sequences to derandomize
the function which is copy-protected all the while maintaining the uncloneability of the resulting
program.

4Strictly speaking, we give a deterministic classical algorithm in the proof of Theorem 9 computing in triple
exponential time the elements of an exponential-time ingenerable sequence. It is then easy to see how to construct
an algorithm enumerating Pyes and Pno when given an algorithm which computes θn and xn for any n ∈ N.
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1.2 Open Questions

This work represents the first attempt to study uncloneable advice and shows that this concept
is, in principle, achievable. Beyond identifying other languages and promise problems which admit
uncloneable advice, this work leaves many other open questions. We highlight two such questions,
mentioned in the previous discussion, which we believe are of particular interest.

Can we say more on the complexity of cloning quantum states? As illustrated in Figure 1
and discussed in Section 1.1.2, our work establishes the existence of sequences of states at the
simultaneous extremes of cloning and generating complexity.

Are there scenarios between the extremes sketched above? In other words, how densely popu-
lated is the lower-right triangle of Figure 1? Our results imply the existence of a sequence of states
that are impossible to clone in polynomial time — or indeed in exponential time — but which can
be perfectly generated in triple exponential time. Can we close this gap? For example, can we find
a fixed sequence which cannot be cloned in polynomial time, but can be generated in exponential
time?

In a sense, our work initiates a theory of “computability of cloning” by showing a separation
between sequences of states which can and cannot be cloned. We believe that further and more fine-
grained work in this direction would help establish a theory on the complexity of cloning quantum
states. We hope that such a theory would then provide useful tools for uncloneable cryptography
and other aspects of quantum information theory.

Can we “boost” the success probability of an honest party using uncloneable advice
while maintaining the uncloneability property? As discussed in Section 1.1.1, the standard
error reduction technique of giving multiple copies of the advice state evidently fails to maintain
the required uncloneability property of the initial state. Furthermore, the well-known amplification
technique of Marriott and Watrous [MW05], developed in the context of quantum proofs and the
QMA complexity class, does not appear to be directly applicable to the context of uncloneable
advice. We highlight two obstacles in applying the result of Marriott and Watrous to uncloneable
advice. First, the Marriott-Watrous technique requires changing the proof state and it is unclear
if this modification to the state would preserve the required uncloneability property. Second, and
perhaps more fatal, is that directly applying the Marriott-Watrous technique to quantum advice,
instead of quantum proofs, does not in general yield quantum advice as the required change to
the quantum state depends on problem instance for which we wish to increase the probability of
success. This dependency is acceptable in the context of proofs as these may depend on the problem
instance, but is unacceptable in the context of advice which must be independent of the problem
instance.

Addressing this question would elucidate the relation between the complexity classes neglQP/upoly
and BQP/upoly. Moreover, finding a generic boosting technique for uncloneable advice could have
wider repercussions in uncloneable cryptography by effectively lowering the necessary threshold for
correctness.
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2 Preliminaries

2.1 Notation and Terminology

Sets, bit strings, miscellaneous. We let N denote the non-negative integers, R denote the real
numbers, R+ denote the strictly positive real numbers, and R+

0 = R+∪{0}, denote the non-negative
real numbers. For any n ∈ N, we let [n] denote the set {i ∈ N : 1 ≤ i ≤ n}. For any set X , we
let P(X ) denote the power set of X .

For all n ∈ N, let {0, 1}n denote the set of bit strings of length n and let {0, 1}∗ = ∪n∈N{0, 1}n
denote the set of all bit strings of finite length. We let |x| denote the length of the bit string x and
we denote the empty bit string by ε, which is to say that {0, 1}0 = {ε}. If x and y are two strings
of the same length, we let x · y denote their inner product modulo 2. The result of concatenating
two bit strings x ∈ {0, 1}n and y ∈ {0, 1}m is denoted by (x, y) ∈ {0, 1}n+m, using implicitly the
isomorphism {0, 1}n×{0, 1}m ∼= {0, 1}n+m. For all n ∈ N we let 0n and 1n denote the all-zero and
all-one bit strings in {0, 1}n, respectively.

Logarithms are always taken in base 2.

Probability theory. If X is a set, we use Ex←X f(x) to denote the expectation of f when x is
sampled uniformly at random from X . If α is a random variable, we use x ← α to denote that x
is sampled according to α.

Asymptotic analysis. We will use the ω, Ω, and O notation to characterize the asymptotic
behaviour of functions from N to R+

0 [Knu76].5

Given two functions f, g : N → R, we say that f is eventually smaller than g if there exists
a n0 ∈ N such that n ≥ n0 =⇒ f(n) ≤ g(n). A function f : N → R is said to be negligible if
it is eventually smaller than n 7→ n−c for all c ∈ N. See, for example, [Bel02]. Recall that 2−f is
negligible if and only if f ∈ ω(log) and that if η is negligible, f is non-decreasing, and f ∈ Ω(nr)
for some r ∈ R+, then η ◦ f is also negligible.

Turing machines and their run times. We only consider deterministic Turing machines in
this work and we refer to standard references, such as [AB09] or [LV19], for more details. We do,
however, establish some notation and terminology.

A Turing machine T takes as input a string x ∈ {0, 1}∗ and either (i) halts and produces as
output a string y ∈ {0, 1}∗, or (ii) never halts, in which case it does not produce an output. We
write T(x) = y to denote the fact that the Turing machine T halts and produces the output y on
input x. Turing machines perform their calculations in a series of discrete steps. We say that a
Turing machine T runs in polynomial-time if and only if there exists a polynomial p : N→ N such
that on input of any string x, the machine T halts after at most p(|x|) steps. For this paper, we
identify efficient (quantum) computations with polynomial-time (quantum) computations. We also
say that a Turing machine runs in exponential, double exponential, or triple exponential-time if
there exists a polynomial p : N→ N such that on input of any string x, the machine halts after at

most 2p(|x|), 22
p(|x|), or 22

2p(|x|)
steps, respectively.

We let T denote the set of all Turing machines. Note that T is countable and so there exists a
bijective map τ : N→ T .

5Note that we follow Brassard [Bra85] by always treating ω(f), Ω(f), and O(g) as sets and avoiding “one-way
equations”.
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Finally, for maps f : N→ N, we say that a Turing machine T computes f , perhaps within some
time bound, if on input of 1n, i.e. the bit string composed of n instances of 1, it outputs 1f(n). In
particular, if T can computes f : N→ N and T(1n) halts within T (n) steps, then f(n) ≤ T (n) as T
can write at most one symbol per step.

Quantum mechanics, Hilbert spaces, operators, and channels. Quantum mechanics, to
the extent needed for this work, is a theory concerning linear operators on finite-dimensional com-
plex Hilbert spaces. We refer the reader to the standard introductory textbooks of Watrous [Wat18]
and Nielsen and Chuang [NC10] for more details. The set of linear and unitary operators on a given
Hilbert space H are denoted L(H) and U(H), respectively. We recall that a channel is a completely-
positive trace preserving map Φ : L(H)→ L(H′) and that channels precisely coincide with the set
of all possible transformations that a quantum system may undergo over a finite time period. We
also recall that by a state, we mean a density operator.

In this work, we assume that all Hilbert spaces are finite tensor products of C2, which is to
say that we only consider spaces representing finite numbers of qubits. We suppose that

(
C2
)n

admits {|s⟩}s∈{0,1}n as an orthonormal basis and, when appropriate, we identify a string s with its
corresponding density operator |s⟩⟨s|.

We recall that the trace distance between two states is given by 1
2∥ρ− σ∥Tr where ∥·∥Tr denotes

the trace norm, which is also the p = 1 case of the more general Schatten p-norms. We will denote
the completely bounded trace norm on channels, also known as the diamond norm, by ∥·∥⋄.

Gate sets and quantum circuits. A gate set G is a finite set of channels. We assume that all
elements of a gate set are channels of the form L 7→ ULU † for a unitary operator U ∈ U(C2⊗n)
acting on n qubits whose whose entries in the computational basis are algebraic. Note that n need
not be identical across unitaries. There are two possible exceptions: G may also include the state
preparation map P : C→ L(C2), given by c 7→ c |0⟩⟨0|, and the single-qubit trace Tr : L(C2)→ C.

For a gate set G, we let ⟨G⟩ denote the set of channels generated by G. More formally, ⟨G⟩ is
precisely the set of all channels Ψ which can be expressed as

Ψ =
d
⃝
i=1

wi⊗
j=1

Ψi,j (2)

for some non-negative integers d,w1, . . . , wd ∈ N and channels Ψi,j ∈ G. We call an expression C of
the form presented on the right-hand side of Equation (2) a circuit built from G implementing the
map Ψ and we denote the set of all circuits built from G by ⟨G⟩c. Formally, we distinguish between
different circuits even if they implement in the same channel but, when convenient, we identify a
circuit with the channel it implements. A circuit family C = (Cn)n∈N is a sequence of circuits built
from the same gate set. We occasionally write “a circuit family C” without the explicit sequence.

An encoding for a gate set G is a surjective map e : {0, 1}∗ → ⟨G⟩c. If e(s) = C, we call the
string s a description of C. Encodings must satisfy additional conditions [Wat09] which we do not
exhaustively list. We require an encoding e to be such that every Ψi,j term (or lack thereof) in the
circuit e(s) must be efficiently computable from i, j, and s. Every gate set admits an encoding.

We say that C is an (a, b)-circuit if it implements a channel C : L(C2⊗a)→ L(C2⊗b) for a, b ∈ N.
We say that C is a (a, b)-circuit family if each Cn is an (a(n), b(n))-circuit for a, b : N→ N. We say
that a circuit family C is uniform if there exists a Turing machine T which, on input of 1n, outputs a
description of Cn in some prescribed encoding. We say that C is polynomial-time, exponential-time,
or triple exponential-time if such a T exists and runs in polynomial-time, exponential-time, or triple
exponential-time, respectively.
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A gate set G is said to be universal if for any ϵ > 0 and any channel Φ there exists a Ψ ∈
⟨G⟩ such that ∥Φ−Ψ∥⋄ ≤ ϵ. As a consequence of the Solovay-Kitaev theorem [Kit97] and its
algorithmic implementations [DN06, BGT21], for any computable map t : N → N, any universal
gate set G, and any uniform circuit family C ′ built from any (possibly non-universal) gate set G′,
there exists a uniform family C built from G such that ∥Cn − C ′n∥⋄ ≤ 2−t(n). Moreover, if t is
efficiently computable, we can replace “uniform” with “polynomial-time” or “exponential-time”.
Unless otherwise specified, we work with the universal gate set composed of the state preparation
map, the single-qubit trace, as well as conjugation by the Toffoli, Hadamard, and phase-shift
unitaries [Wat09].

2.2 A Simultaneous Quantum Goldreich-Levin Theorem

We recall a recent result of Kundu and Tan [KT22, Lemma 23] and recast it slightly to consider
uniform and polynomial-time circuit families. In some sense, this result extends the quantum
Goldreich-Levin theorem [AC02] to a setting with two adversaries.

This lemma concerns a scenario where two non-communicating parties, Bob and Charlie, share
a quantum state ρxB ,xC . This state represents the information each of these parties has on the value
of two bit strings (xB, xC) ∈ {0, 1}n×{0, 1}n sampled according to a random variable ξ. The proof
given in [KT22] for this lemma shows that if Bob and Charlie can simultaneously, independently,
and respectively determine the values of the inner products xB · yB and xC · yC with probability at
least 1

2 + δ, where the probability is taken over the uniform random sampling of yB and yC (which
are then given to Bob and Charlie, respectively) and the sampling of (xB, xC) from ξ, then they
could instead simultaneously, independently, and respectively determine the values of xB and xC
with probability at least δ3/2.

More technically, the proof shows how to transform a circuit guessing the inner product xL · yL
for either L ∈ {B,C} into a circuit guessing xL. The idea is to adapt the Bernstein-Vazirani
algorithm [BV97] where the oracle for the inner product map y 7→ x · y is replaced with a purified
version of the circuit guessing the inner product. An important property of this transformation, not
explicitly mentioned in [KT22] but which we highlight here, is that this transformation is uniform
(respectively, polynomial-time or exponential-time) in the sense that applying it circuit-by-circuit to
a uniform (respectively, polynomial-time or exponential-time) circuit family yields another uniform
(respectively, polynomial-time or exponential-time) circuit family.

In practice, as in [KT22], we take the contrapositive of the above. We state that if Bob and
Charlie have a negligible probability of computing xB and xC , then they have at most a negligible
advantage in computing xB · yB and xC · yC .

Lemma 1. Let ℓ, b, c : N → N be maps and, for all n ∈ N, let ξn be a random variable on the
set {0, 1}ℓ(n) × {0, 1}ℓ(n). For all n ∈ N and pairs (xB, xC) in the support of ξn, let ρn,xB ,xC be a
density operator on b(n) + c(n) qubits.

If for every pair (B′, C ′) of uniform (b, ℓ)- and (c, ℓ)-circuit families, respectively, the map

n 7→ E
(xB ,xC)←ξn

⟨xB, xC |
(
B′n ⊗ C ′n

)
(ρn,xB ,xC ) |xB, xC⟩ (3)

is negligible, then for every pair (B,C) of uniform (ℓ+b, 1)- and (c+ℓ, 1)-circuit families, respectively,
the map

n 7→ E
yB←{0,1}ℓ(n)

yC←{0,1}ℓ(n)

(xB ,xC)←ξn

⟨xB · yB, xC · yC | (Bn ⊗ Cn) (yB ⊗ ρn,xB ,xC ⊗ yC) |xB · yB, xC · yC⟩ −
1

2
(4)
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is negligible.
Moreover, the above holds if we replace all instances of “uniform” with “polynomial-time” or

“exponential-time”.

We note that an alternative proof of this lemma can also be found in [AKL23].

3 Ingenerable Sequences of Bit Strings

In this section, we define the notion of ingenerable sequences, demonstrate that such sequences
exist, and illustrate a few of their simple properties.

Before proceeding, we emphasize that while our definitions and results are formulated in the
language of quantum circuits, there is nothing inherently quantum at play in this section, with
the exception of Section 3.3. In particular, the definitions can easily be rephrased to fit a wide
variety of computational models, including classical circuits or classical Turing machines. However,
we believe the resulting notions are only interesting when the computational model is probabilistic
and uniform. Moreover, the proofs of our main existence theorems essentially only rely on the
assumption that there are countably many instances in the computational model.

Thus, essentially all definitions and results of this section, excluding Section 3.3, still hold if we
were to replace the word “circuit”, where the “quantum” is implicit, with the words “probabilistic
classical Turing machine” or “uniform classical circuits supplied with additional random bits”.
Our definitions would also hold for “non-uniform circuits”, classical or quantum, but our existence
theorems would not.

Of course, sequences which are ingenerable with respect to one model of computation need not
be ingenerable with respect to another.

3.1 Definitions and Existence

We first introduce terminology concerning sequences of bit strings.

Definition 2. Let ℓ : N → N be a map. An ℓ-sequence is a sequence of bit strings (sn)n∈N such
that sn ∈ {0, 1}ℓ(n) for all n ∈ N.

In practice, we will only concern ourselves with sequences of linear length, such as 2n-sequences,
or of polynomial length. However, the theory developed in this section is applicable to arbitrary ℓ-
sequences.

Now, we formally define the notion of q-ingenerability for some map q : N → R. In short,
a sequence is q-ingenerable if every circuit family under consideration eventually always fails to
produce the elements of the sequence with probability at least q. We also define a weaker notion
of this idea, which we call weak ingenerability. A sequence is weakly ingenerable if every circuit
family fails infinitely often to produce the elements of the sequence with probability at least q.

We immediately see that every q-ingenerable sequence is weakly q-ingenerable. Essentially all of
our constructions will use ingenerable sequences, but weak ingenerability will be easier to compare
and contrast with other existing definitions and notions.

Finally, we consider ingenerability with respect to two different classes of circuit families. A
computably ingenerable sequence is one which cannot be generated by any uniform circuit family.
An exponential-time ingenerable sequence is one which cannot be generated by any exponential-
time circuit family. Our definition can be adapted in a straightforward way to other classes of
circuit families but these two will be sufficient for this work. The main conceptual advantage of
exponential-time ingenerable sequences over computably ingenerable sequences is that certain such
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sequences can actually be computed by Turing machines, unlike computably ingenerable sequences
which are, by their natural, uncomputable. See Theorem 9.

Recall from the end of Section 2.1 that, for two maps a, b : N → N, an (a, b)-circuit family C
is a sequence of circuits (Cn)n∈N where Cn takes a(n) qubits as input and produces b(n) qubits as
output.6

Definition 3. Let G be a gate set and q : N→ R be a map. An ℓ-sequence (sn)n∈N is computably
(respectively, exponential-time) q-ingenerable with respect to G if for every uniform (respectively,
exponential-time) (0, ℓ)-circuit family C built from G the inequality

⟨sn|Cn(ε) |sn⟩ < q(n) (5)

holds for all but finitely many values of n ∈ N.
We say that (sn)n∈N is weakly computably (respectively, exponential-time) q-ingenerable with

respect to G if we only require the above inequality to hold for infinitely many values of n ∈ N.

It is trivial to show that the concept of ingenerability depends on the underlying gate set G,
which is why we make this set explicit in the definition. For example, consider the gate set composed
of only the |0⟩ state preparation map, G = {c 7→ c |0⟩⟨0|}, and the gate set G′ = G ∪ {L 7→ XLX}
where we add conjugation by the X = |0⟩⟨1|+ |1⟩⟨0| unitary to G. Clearly, the n-sequence (1n)n∈N
is computably c-ingenerable with respect to G for any constant c > 0, but not with respect to G′.

The above example is a bit contrived since G and G′ are not very interesting gate sets. In partic-
ular, neither are universal. However, it appears difficult to show that the notion of r-ingenerability
coincides even for two distinct but universal gate sets G and G′. This is due to the fact that uni-
versality only guarantees that a circuit built from G′ can approximate a circuit built from G to
arbitrarily small but non-zero error and that q-ingenerability is defined via a simple inequality. For
example, it is a priori possible for there to exists an ℓ-sequence (sn)n∈N and a uniform (0, ℓ)-circuit
family (Cn)n∈N built from G such that ⟨sn|Cn(ε) |sn⟩ = 1 for all n ∈ N, but that for every uni-
form (0, ℓ)-circuit family (C ′n)n∈N built from G′ we would have that ⟨sn|C ′n(ε) |sn⟩ < 1 for all n ∈ N.
Such a sequence would be 1-ingenerable with respect to G′, but not with respect to G.

We will later give a slightly modified definition of ingenerability, Definition 6, which will be
sufficient for our needs and which will avoid the issue of any possible dependence on the choice of
the gate set. This definition will also have the added benefit of not requiring an explicit choice of
an q map. First, however, we demonstrate the existence of q-ingenerable ℓ-sequences with respect
to any given gate set G and for any suitable choices of q and ℓ.

Theorem 4. Let ℓ : N → N and q : N → R be maps such that q(n) · 2ℓ(n) > n + 1 for all n ∈ N.
Then, for any gate set G there exists an ℓ-sequence which is exponential-time q-ingenerable with
respect to G.

Proof. We first construct an ℓ-sequence (sn)n∈N of bit strings and then we show that it is exponential-
time q-ingenerable with respect to G. We interpret the output of all Turing machines in this proof
as circuits constructed from G.

Let R = {rk(n) = 2(n+2)k}k∈N be a set of maps. In the context of this proof, these maps will
be taken as bounds on the run times of various Turing machines. We note two useful properties of
the set R before proceeding. First, ri ≤ ri+1 for all i ∈ N. Second, if g ∈ O(2nk0 ) for some k0 ∈ N,
then there exists an rk′ ∈ R such that g ≤ rk′ .

Now, let T be the set of all Turing machines and let Φ : N → T × R be a map such that for
all T ∈ T there are infinitely many r ∈ R such that the pair (T, r) is in the image of Φ. By the

6In this context, we interpret any k ∈ N as the constant map n 7→ k.

15



previously discussed properties of R, this implies that if T runs in exponential-time, then there
exists an nT such that Φ(nT) = (T, r) and T(1n) halts in at most r(n) steps for all n ∈ N. Such a
map Φ exists as T ×R is countable and hence there is a surjection from N to T ×R. Note that Φ
being a surjection is a sufficient, but not necessary, condition. To ease later notation, let τ : N→ T
and ρ : N→ R be the unique maps satisfying Φ(n) = (τ(n), ρ(n)) for all n ∈ N.

Now, for every t, n ∈ N, define the set7

St,n =


{
x ∈ {0, 1}ℓ(n) : ⟨x| τ(t)(1n)(ε) |x⟩ ≥ q(n)

}
if, on input of 1n, τ(t) halts in
at most ρ(t)(n) steps and yields
a (0, ℓ(n))-circuit.

∅ else.

(6)

In other words, St,n is the set of strings generated with probability at least q(n) by the circuit
described by the t-th Turing machine on input 1n, provided that the machine indeed halts in at
most ρ(t)(n) steps and outputs the description of a (0, ℓ(n))-circuit. Under these assumptions, we
have that

∑
x∈{0,1}ℓ(n) ⟨x| τ(t)(1n)(ε) |x⟩ = 1 which implies that

|St,n| ≤
1

q(n)
. (7)

Note that this inequality also holds if τ(t)(1n) does not halt within the specified number of steps
or does not yield a (0, ℓ(n))-circuit as |St,n| = 0 in this case and our assumptions imply that q must
be strictly positive. Next, define

Sn =
⋃

t∈{0,...,n}

St,n. (8)

By our assumption on the maps ℓ and q, we have that

|Sn| ≤ (n+ 1) · 1

q(n)
< 2ℓ(n), (9)

which implies that {0, 1}ℓ(n) \ Sn is non-empty. For all n ∈ N, we take sn to be the first element,
in lexicographic order, of {0, 1}ℓ(n) \ Sn. This yields an ℓ-sequence (sn)n∈N.

Now, we show that (sn)n∈N is exponential-time q-ingenerable with respect to G. Consider an
exponential-time (0, ℓ)-circuit family (Cn)n∈N. If no such circuit family exists, then (sn)n∈N is
vacuously exponential-time q-ingenerable and we are done.

Let T be an exponential-time Turing machine which generates this circuit family. By our
previous discussion on R and Φ, there exists a tT ∈ N such that Φ(tT) = (T, r) and where T(1n)
halts in at most r(n) steps. It is now sufficient to show that

n ≥ tT =⇒ ⟨sn|Cn(ε) |sn⟩ < q(n). (10)

Assume this was not the case and that there exists an n′ ≥ tT such that ⟨sn′ |Cn′(ε) |sn′⟩ ≥ q(n′).
Then, by definition, sn′ ∈ StT,n′ ⊆ Sn′ . Contradiction, since sn′ ∈ {0, 1}ℓ(n′) \ Sn′ .

7Recall that τ(t)(1n)(ε) is a quantum state, when this expression is defined. Indeed, we consider the t-th Turing
machine, τ(t), and run it on input 1n. This yields the bit string τ(t)(1n), assuming the machine halts. Implicitly,
we interpret this bit string as a quantum circuit, which itself implicitly defines a quantum channel. Assuming this
quantum channel takes as input the empty system, we apply it to the empty quantum state ε to obtain as output
the state τ(t)(1n)(ε).
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Note that the above proof is constructive in the sense that once q, ℓ, G and Φ are fixed, then
the sequence (sn)n∈N is uniquely determined.

We also note that by modifying the set R used in the proof, we can obtain sequences which are
q-ingenerable with respect to circuit families generated by Turing machines operating under various
time constraints. An important example for this work is the case where R = {rk(n) =∞}k∈N and
where we say that the Turing machine T halts in at most ∞ steps on a given input if and only if it
does halt. For completeness, we formalize this below.

Theorem 5. Let ℓ : N → N and q : N → R be maps such that q(n) · 2ℓ(n) > n + 1 for all n ∈ N.
Then, for any gate set G there exists an ℓ-sequence which is computably q-ingenerable with respect
to G.

Proof sketch. Follow the proof given for Theorem 4, but with R = {rk(n) =∞}k∈N.

We now address the question of the possible dependence of our definition of ingenerable se-
quences on the choice of the underlying gate set. Looking ahead, this work will be mainly concerned
with ℓ-sequences which are computably or exponential-time (p ·2−ℓ)-ingenerable for a polynomial p,
but that the particular polynomial is not important. With this in mind, we formulate the follow-
ing definition of ingenerability which will be sufficient for our needs as well as independent of the
choice of the gate set. We also note that this definition naturally extends to the notion of weak
ingenerability.

Definition 6. Let ℓ : N → N be a map. An ℓ-sequence is said to be computably (respectively,
exponential-time) ingenerable if for every gate set G there exists a polynomial pG : N → R such
that the sequence is computably (respectively, exponential-time) (pG ·2−ℓ)-ingenerable with respect
to G.

By the Solovay-Kitaev theorem, we will see that (p·2−ℓ)-ingenerability with respect to a universal
gate set for any polynomial p : N→ R is a sufficient condition to be ingenerable. By definition, it
is also a necessary condition. However, a technical condition on the computability of ℓ is needed to
formally prove this. The following lemma, which establishes conditions under which ingenerability
is a trivial property, will help us account for this technicality.

Lemma 7. Let ℓ : N→ N be a map. The following two statements are equivalent:

1. Every ℓ-sequence is computably (respectively, exponential-time) ingenerable.

2. Either ℓ is uncomputable (respectively, can’t be computed in exponential-time), or ℓ ∈ O(log).

Proof. We first show that the second statement implies the first.
If ℓ is uncomputable (respectively, cannot be computed in exponential-time), then there are

no uniform (respectively, exponential-time) (0, ℓ)-circuit families, as a Turing machine producing
circuits with the appropriate number of output qubits could be used to compute ℓ. As there are no
suitable (0, ℓ)-circuit family, it is vacuously true that every ℓ-sequence is computably (respectively,
exponential-time) ingenerable.

If ℓ ∈ O(log), then there exists n′, c ∈ N such that n ≥ n′ =⇒ ℓ(n) ≤ c log(n), which implies
that 2−ℓ(n) ≥ n−c for all sufficiently large values of n. Now, take p(n) = nc+1 and ñ = max{n′, 2}
so that n ≥ ñ =⇒ p(n) · 2−ℓ(n) ≥ n ≥ 2. Now, consider any ℓ-sequence (sn)n∈N and any
uniform (0, ℓ)-circuit family (Cn)n∈N built from any gate set G. For all n ≥ ñ, we have that

⟨sn|Cn(ε) |sn⟩ ≤ 1 < 2 ≤ p(n) · 2−ℓ(n). (11)
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Thus, (sn)n∈N is computably ingenerable, which implies that it is also exponential-time ingenerable.
We now show that the first statement implies the second. Assume that every ℓ-sequence is com-

putably (respectively, exponential-time) ingenerable. Further, assume that ℓ is computable (respec-
tively, computable in exponential-time), as otherwise we are done. Consider the gate set G composed
of precisely the |0⟩ state preparation map, the ℓ-sequence (0ℓ(n))n∈N, and the uniform (respectively,
exponential-time) (0, ℓ)-circuit family (Cn)n∈N constructed from G where Cn is simply the parallel
composition of ℓ(n) instances of the |0⟩ state preparation map. Clearly,

〈
0ℓ(n)

∣∣Cn(ε)
∣∣0ℓ(n)〉 = 1.

But, (0ℓ(n))n∈N is assumed to be computably (respectively, exponential-time) ingenerable. Thus,
there exists a polynomial pG : N → R such that 1 < pG(n) · 2−ℓ(n) for all sufficiently large values
of n. This implies that ℓ(n) ≤ log(pG(n)) for all sufficiently large values of n, which is sufficient to
conclude that ℓ ∈ O(log).

Lemma 8. Let G be a universal gate set and ℓ : N → N be any map (respectively, any effi-
ciently computable map). If an ℓ-sequence is computably (respectively, exponential-time) (p · 2−ℓ)-
ingenerable with respect to G for a polynomial p : N → R, then it is computably (respectively,
exponential-time) ingenerable.

Proof. Let (sn)n∈N be an ℓ-sequence which is (p · 2−ℓ)-ingenerable with respect to G. Further,
assume that ℓ is computable, as otherwise (sn)n∈N is already known to be ingenerable by Lemma 7.

Let G′ be any gate set and let (C ′n)n∈N be a uniform (respectively, exponential-time) family
of (0, ℓ)-circuits built from this set. Now, let (C̃n)n∈N be a uniform family of (0, ℓ)-circuits with
gates from the universal gate set G such that ∥Cn − C̃n∥ ⋄ ≤ 2−ℓ(n) for all n ∈ N. Such a uniform
(respectively, exponential-time) family exists by the Solovay-Kitaev theorem. Since (sn)n∈N is
computably (respectively, exponential-time) (p · 2−ℓ)-ingenerable with respect to G, we have that

⟨sn|Cn(ε) |sn⟩ ≤ ⟨sn| C̃n(ε) |sn⟩+ 2−ℓ(n) < (p(n) + 1) · 2−ℓ(n) (12)

for all sufficiently large values of n. Hence, the ℓ-sequence (sn)n∈N is computably (respectively,
exponential-time) (p+1) ·2−ℓ-ingenerable with respect to G′. This yields the desired result as p+1
is a polynomial.

The culmination of the results in this section is the following theorem which asserts the existence
of computably ingenerable and exponential-time ℓ-sequences for any suitable choice of ℓ.

Theorem 9. There exists a computably ingenerable ℓ-sequence for any map ℓ : N→ N.
Moreover, if ℓ is efficiently computable, then there exists an exponential-time ingenerable ℓ-

sequence which can be computed in triple exponential-time by a classical deterministic Turing
machine.

Proof. Let G be a universal gate set and let p(n) = n + 2. Then, by Theorem 5, there exists a
computably (p · 2−ℓ)-ingenerable ℓ-sequence with respect to G. By Lemma 8, this is a computably
ingenerable ℓ-sequence.

Keeping the same G and p and assuming that ℓ can be efficiently computed, we now show how
to fix the map Φ in the proof of Theorem 4 to obtain an ℓ-sequence which is exponential-time
ingenerable with respect to G but which can be computed in triple exponential-time by a classical
deterministic Turing machine. By Lemma 8, this is an exponential-time ingenerable sequence.

Recall that R =
{
rk(n) = 2(n+2)k

}
k∈N

. Let ⟨·⟩ : {0, 1}∗ → T be a mapping from bit strings to

Turing machines and let U be a Turing machine satisfying

U(s, x, 1t) =

{
(1, ⟨s⟩(x)) if ⟨s⟩ halts within t steps on input x

0 else
(13)
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and which runs in polynomial time.8 In other words, U is an efficient universal Turing machine
with a time bound.9 Further, let b : N→ {0, 1}∗ be the natural bijection between the non-negative
integers and the list of all finite bit strings taken in lexicographic order, starting with the empty
string, i.e. b(0) = ε, b(1) = 0, b(2) = 1, and b(3) = 00.

Let (αn)n∈N and (βn)n∈N be two sequence of non-negative integers such that the following three
conditions are satisfied. First, αn, βn ≤ n for all n ∈ N. Second, n 7→ (αn, βn) can be computed
efficiently in n. Third, for every a ∈ N, there are infinitely many distinct b ∈ N such that (a, b) is
in the image of n 7→ (αn, βn).

10 We define Φ by n 7→ (⟨b(αn)⟩, rβn).
Note that by our assumptions on (αn)n∈N and (βn)n∈N, the map Φ we have constructed here

satisfies the assumptions made of it in the proof of Theorem 4, namely that for every T ∈ T there
are infinitely many r ∈ R such that (T, r) is in the image of Φ.

Now that we have fixed Φ, the ℓ-sequence (sn)n∈N constructed in the proof of Theorem 4 is
fixed. It now suffices to show how it can be computed in triple exponential-time.

Recall from the proof of Theorem 4 that sn is the first element, in lexicographic order, of the
non-empty set {0, 1}ℓ(n) \ Sn where Sn = ∪nt=0St,n and

St,n =


{
x ∈ {0, 1}ℓ(n) : ⟨x| τ(t)(1n)(ε) |x⟩ ≥ q(n)

}
if, on input of 1n, τ(t) halts in
at most ρ(t)(n) steps and yields
a (0, ℓ(n))-circuit.

∅ else.

(14)

where τ and ρ are the projections on the first and second component of Φ, respectively. Thus, to
compute sn, it suffices to be able to check the membership of a string in the sets St,n for all t ≤ n.
We describe a Turing machine T′ running in triple exponential-time which finds the first string, in
lexicographic order, which is not in any of these sets.

At a high-level, the triple exponential run time of T′ can be explained as follows. The first
exponential is due to the need to simulated other Turing machine running in exponential-time.
The second exponential is essentially due to the fact that T′ will be simulating more and more
complex Turing machines as n grows (specifically due to the fact that n 7→ rn(n) is not exponential
in n, but is double exponential). The third exponential is due to the “brute force” numerical
computation to analyse the quantum circuits produced by the simulated Turing machines.

Formally, let T′ be a Turing machine which implements the following algorithm on input of 1n:

1. Compute ℓ(n).

(By assumption, this can be done efficiently.)

8Technically, U should receive (r(s), 01, r(x), 01, 1t) as input, where r : {0, 1}∗ → {0, 1}∗ is the map which repeats
each element of the argument twice, i.e. r(010) = 001100. This, with the help of the separators 01, allows U to
unambiguously parse and separate s, x, and 1t. However, for simplicity, we omit these extra details in this proof.

9Such a machine U and encoding ⟨·⟩ can be found implicitly in [NW06]. In particular, Theorem 7 of [NW06] shows
that the run time of their universal Turing machine U3,11 is polynomial in the run time of the simulated machine M
and the number of states of M . Adding a mechanism to count the number of simulated steps can be done with at
most a polynomial overhead. Moreover, they implicitly provide an injective encoding e : T → {0, 1}∗ by, essentially,
simply listing all transition rules of the Turing machine in a prescribed manner. From this encoding e, we can define
the surjection ⟨·⟩ : T → {0, 1} by ⟨s⟩ = e−1(s) if s is in the image of e, and where ⟨s⟩ is otherwise the 2 state Turing
machine which immediately and always transitions from its initial state to its halting state in the first step. Note
that this implies that the number of states of ⟨s⟩ is at most |s|+ 2. As a final note, the Turing machines of [NW06]
use a non-binary alphabet. However, this can be transformed to a Turing machine using the alphabet {0, 1} with a
constant multiplicative overhead in time and space usage using standard techniques [AB09].

10As a concrete example, we can take (αn)n∈N to be the sequence obtained by concatenating each finite sequence
of the form 0, 1, 2, . . . , n for all n ∈ N and take (βn)n∈N to be the sequence obtained by repeating, in increasing order,
every element n ∈ N exactly n+ 1 times.
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2. Initialize a string s = 0ℓ(n) and a counter t = 0, both of which will be updated as the algorithm
proceeds.

(This can be done efficiently in ℓ(n).)

3. If t > n, go to step 4. Else, do the following:

(a) Compute αt and βt.

(This can be done efficiently in t, and so efficiently in n as t ≤ n.)
(b) Run U(b(αt), 1

n, 1rβt (n)) and let z denote the output.

(By assumption, there exists a polynomial p, which we can assume to be non-decreasing,
such that this takes at most p(|b(αt)|+ n+ rβt(n)) steps. As αt, βt ≤ t ≤ n, |b(n)| ≤ n,
and ri ≤ ri+1, this then takes at most p(2n + rn(n)) steps. Note that rn(n) = 2(n+2)n .
Since (n+ 2)n ∈ O(2n2

), we conclude that rn(n) and p(2n+ rn(n)) are at most double
exponential in n.)

(c) If the first bit of z is 0, which is to say that the Turing machine being simulated did
not terminate within the desired number of steps, do nothing. Else, let z′ be all but the
first bit of z and check that z′ encodes a (0, ℓ(n)) circuit. If it does not, do nothing. If
it does, then do the following:

(This check can be done efficiently in ℓ(n) and the length of z′. Since ℓ(n) is at at most
double exponential in n and the length of z′ is at most double exponential in n, as it is
the result of a simulation which ran for at most rn(n) simulated steps, then this check
can be executed in time double exponential in n.)

i. Let C be the (0, ℓ(n)) circuit described by z′. Check if ⟨s|C(ε) |s⟩ < p(n) · 2−ℓ(n). If
so, increment t by 1 and go back to step 3. If not, update s to be the next string of
length ℓ(n), in lexicographic order, and execute this step again.
(The time complexity of this check is dominated by the complexity of computing
the value ⟨s|C(ε) |s⟩. Recall that C is described by z′ which was produced after at
most rn(n) simulated steps. Hence, |z′| ≤ rn(n) and so C can have at most rn(n)
gates. Thus, we can compute ⟨s|C(ε) |s⟩ in time exponential in rn(n), which is triple
exponential in n as rn(n) is double exponential in n.)

4. Output s.

The fact that T′(1n) indeed halts and outputs sn follows from the proof of Theorem 4. The time
complexity is dominated by step 3.c.i, with each execution of that step taking time which is at
most triple exponential in n. Furthermore, this step is executed at most (n+1)2ℓ(n) times, which is
itself at most triple exponential in n. We conclude that T′ runs in at most triple exponential time
on input of 1n, which is the desired result.

In Appendix A, we study some links between computably ingenerable sequences and Martin-Löf
random sequences. Recall that a Martin-Löf sequence is, essentially, a fixed and infinite sequence
of bits w ∈ {0, 1}∞ which passes all possible computable tests of randomness. We show in this ap-
pendix that every Martin-Löf random sequence yields a weakly computably ingenerable ℓ-sequence
following the application of a natural bijection and that there exists computably ingenerable ℓ-
sequences which are not Martin-Löf random under the action of the same bijection. We also show
the existence of weakly computably ingenerable sequences which are not computably ingenerable.
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3.2 Replacing Uniformly Random Strings with Ingenerable Strings

The goal of this section is to prove Theorem 10 which is stated below. This theorem can be
understood as stating that if a given computation succeeds with sufficiently small probability over
uniformly random inputs, than applying that same computation on fixed inputs determined by an
ingenerable ℓ-sequence also yields a negligible success probability, provided that ℓ is large enough.

Theorem 10. Let (sn)n∈N be a computably (respectively, exponential-time) ingenerable ℓ-sequence
for any ℓ : N → N (respectively, ℓ ∈ O(nk) for some k ∈ N). Then for any uniform (respectively,
exponential-time) family (Cn)n∈N of (ℓ, 1)-circuits, there exists a polynomial p such that for all
sufficiently large values of n (where “sufficiently large” might depend on (Cn)n∈N) we have that

⟨1|Cn(sn) |1⟩ ≤ p(n) ·
(
2−ℓ(n) + E

x←{0,1}ℓ(n)
⟨1|Cn(x) |1⟩

)
. (15)

In particular, if ℓ ∈ ω(log) and n 7→ Ex←{0,1}ℓ(n) ⟨1|Cn(x) |1⟩ is negligible, then so is n 7→ ⟨1|Cn(sn) |1⟩.

The proof of Theorem 10 is simply an application of the following lemma which considers a
naive and non-efficient way to transform a circuit C for a decision problem into a circuit C̃ for a
search problem. It then gives a lower bound on the probability that C̃ outputs any given string.

Lemma 11. Let n ∈ N and let C be an (n, 1)-circuit. Now, let C̃ be a (0, n)-circuit which
implements the following algorithm:

1. Initialize an empty set S.

2. Iterating over all strings x ∈ {0, 1}n, do the following: Run C(x) and measure the output in
the computational basis. If the result is 1, add x to S. Else, do nothing.

3. Sample uniformly at random a string x from S and output it. If S is empty, sample x̃
uniformly at random from {0, 1}n.

Then, for any s ∈ {0, 1}n, we have that

⟨1|C(s) |1⟩
1 +

∑
x∈{0,1}n\{s} ⟨1|C(x) |1⟩

≤ ⟨s| C̃(ε) |s⟩ . (16)

We give the proof of the above lemma in Appendix B.1. The proof simply neglects the case
where S is empty by the time the algorithm executes step 3 and notes that the left-hand side of
the above inequality is essentially Pr [s is outputted. | s is in S.] · Pr [s in S], up to an application
of Jensen’s lemma.

We can now prove Theorem 10.

Proof of Theorem 10. Let (C̃n)n∈N be a (0, ℓ)-circuit family such that C̃n implements the algorithm
described in Lemma 11 with respect to Cn for all n ∈ N.

Note that if (Cn)n∈N is an exponential-time family and ℓ ∈ O(nk), then (C̃n)n∈N is an exponential-
time circuit family. Otherwise, if (Cn)n∈N is a uniform family then so is (C̃n)n∈N.

We then have that

⟨1|Cn(sn) |1⟩ ≤ ⟨sn| C̃n(ε) |sn⟩

1 +
∑

x∈{0,1}ℓ(n)\{sn}

⟨1|Cn(x) |1⟩

 (17)
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for all n ∈ N. As (sn)n∈N is a computably (respectively, exponential-time) ingenerable ℓ-sequence,
there exists a polynomial p such that, for all sufficiently large values of n, we have that ⟨sn| C̃n(ε) |sn⟩ ≤
p(n) · 2−ℓ(n). Thus,

⟨1|Cn(sn) |1⟩ ≤
p(n)

2ℓ(n)

1 +
∑

x∈{0,1}ℓ(n)\{sn}

⟨1|Cn(x) |1⟩

 (18)

for all sufficiently large values of n. Adding the x = sn term to the sum and distributing the 2−ℓ(n)

factor yields the first desired result.
Furthermore, if ℓ ∈ ω(log), then 2−ℓ is negligible. If Ex←{0,1}ℓ(n) ⟨x|C(x) |x⟩ is also negligible,

then the upper bound is a polynomial times the sum of two negligible functions and thus is itself
negligible.

3.3 Derandomizing a Cloning Task via Ingenerable Sequences

In this section, we prove that there exists a sequence of fixed states (|ψn⟩⟨ψn|)n∈N which cannot be
cloned by any uniform family of quantum circuits (Cn)n∈N. This will be a simple demonstration of
the ideas we will be using in our constructions of uncloneable advice in Section 5.

The following lemma was first shown by Molina, Vidick, and Watrous [MVW13] to formalize
the proof of security of Wiesner’s quantum money scheme [Wie83]. It can be interpreted as a bound
on how well a party can clone a single Wiesner state |xθ⟩ selected uniformly at random.

Lemma 12. Let n ∈ N and let C be an (n, 2n)-circuit. Then,

E
x←{0,1}n
θ←{0,1}n

⟨xθ| ⟨xθ|C
(
|xθ⟩⟨xθ|

)
|xθ⟩ |xθ⟩ ≤

(
3

4

)n

. (19)

Note that the lemma holds for all quantum channels, but we restrict ourselves to circuits to
maintain consistency with the rest of this work.

We can now “derandomize” Lemma 12 by replacing the uniformly random Wiesner state
∣∣xθ〉

with a fixed one chosen according to an ingenerable sequence. It then suffices to invoke Theorem 10
to obtain the desired result.

Theorem 13. Let (sn)n∈N be a computably ingenerable 2n-sequence and parse each sn as a pair of
bit strings of length n, i.e.: sn = (xn, θn) for xn, θn ∈ {0, 1}n for all n ∈ N. Then, for any uniform
family of (n, 2n)-circuits (Cn)n∈N, we have that

n 7→ ⟨xθnn | ⟨xθnn |Cn

(
|xθnn ⟩⟨xθnn |

)
|xθnn ⟩ |xθnn ⟩ (20)

is a negligible function.

Proof. Conceptually, it suffices to apply Theorem 10 to Lemma 12. However, a few technical details
are needed to frame Lemma 12 in a way where Theorem 10 is applicable.

Let (Sn)n∈N be a uniform family of (2n, 3n)-circuits such that on input of x ⊗ θ they output
the state x⊗ θ⊗ |xn⟩⟨xn| for any x, θ ∈ {0, 1}n. Let (Rn)n∈N be a uniform family of (4n, 1)-circuits
which, on input of x⊗ θ⊗ ρ for any strings x, θ ∈ {0, 1}n and any state ρ on 2n qubits, applies the
unitary Hθ ⊗Hθ to ρ, measures the resulting qubits in the computational basis, and outputs 1 if
and only if two copies of x are obtained. It outputs 0 otherwise.
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∣∣xθ
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∣∣
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C̃n

Figure 2: A schematic representation of the C̃n circuits constructed in the proof of Theorem 13. The wires
are labelled, when possible, with the states they are expected to carry in the context of the proof. Every
wire represents n qubits, except the initial and final wires which represent 2n and 1 qubits, respectively.

Now, consider the uniform family of (2n, 1)-circuits (C̃n)n∈N where C̃n is obtained by composing
the Sn, Cn, and Rn circuits, in that order and where Cn act on the last n qubits produced by Sn.
This is illustrated in Figure 2. At the level of channels, we see that

C̃n = Rn ◦ (Idn⊗ Idn⊗Cn) ◦ Sn. (21)

In particular, note that

⟨1| C̃n(x⊗ θ) |1⟩ = ⟨xθ| ⟨xθ|C
(
|xθ⟩⟨xθ|

)
|xθ⟩ |xθ⟩ (22)

for all x, θ ∈ {0, 1}n. Thus, by Lemma 12,

n 7→ E
x←{0,1}n
θ←{0,1}n

⟨1| C̃n(x⊗ θ) |1⟩ (23)

is negligible. Hence, by Theorem 10 and the fact that (sn)n∈N is computably ingenerable,

n 7→ ⟨1| C̃n(xn ⊗ θn) |1⟩ (24)

is also negligible, which, by Equation (22), is the desired result.

4 State Complexity Classes and their Generalizations to Cloning

In this section, we define a notion of cloning complexity class by generalizing the notion of a state
complexity class, as studied by Metger, Rosenthal, and Yuen [RY21, MY23]. Roughly speaking,
these works define and study the complexity of generating a given sequence (ρn)n∈N of quantum
states. The main result of these works is showing that stateQIP = statePSPACE, which is
to say that the sequences of states which can be efficiently generated with the help of a possibly
malicious prover are precisely those which can be generated by polynomial-space quantum circuits.
This is a state synthesis analogue to the celebrated result of QIP = PSPACE [JJUW11].

From our perspective, these prior works concerns the difficulty of creating one copy of ρn starting
from no copies; we propose that it is natural to also study the difficulty of creating two copies from
one, or more generally, b copies starting from a copies for a > b, a, b ∈ N.11

11Recent work has also studied the quantum Kolmogorov complexity of cloning a quantum state [LFM+23]. The
authors obtain results showing that, from this perspective, cloning a quantum state is almost always essentially as
hard as creating it.
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Definition 14. Let C be a class of circuit families, δ : N → R be a function, and a, b ∈ N be two
non-negative integers. A sequence of states (ρn)n∈N is in the state complexity class statea→b

δ (C) if
there exists a circuit family C ∈ C and an n′ ∈ N such that

n ≥ n′ =⇒ 1

2

∥∥∥ρ⊗bn − Cn(ρ
⊗a
n )
∥∥∥
Tr
≤ δ(n). (25)

We also define
statea→b(C) =

⋂
k∈N

statea→b
n−k (C). (26)

If a = 0 and b = 1, we may omit the a→ b superscript from all the above notation.

Note that in full generality, we could also have a and b in the definition be maps from N to N
but this will not be necessary for our observations.

Naturally occurring classes of circuit families which may be of interest include the class of
uniform circuit families, which we denote CUNIF, and the class of polynomial-time circuit families,
which we denote CPOLY. Letting CPSPACE denote the class of “space-uniform circuits” as given
in [MY23, Definition 2.2] and statePSPACE be as given in [MY23, Definition 2.4], we find, as
expected, that state(CPSPACE) = statePSPACE.12 We note that finding a class of circuit families,
tentatively denoted CQIP, such that state(CQIP) = stateQIP, where the latter is as given in [MY23,
Definition 5.1], appears to be a bit more involved and non-trivial. In short, it is unclear how to
encode the required soundness property of stateQIP into a class of circuit families. Nonetheless,
we believe Definition 14 to be a natural generalization of state complexity classes in a wide range
of interesting settings.

One interesting result of formalizing cloning complexity classes is that it allows us to make
more precise statements about the relations between the complexity of generating and of cloning
quantum states. Specifically, we can now state and prove the three lemmas which were sketched in
Figure 1 from Section 1.1.2.

The first lemma formalizes the idea that, for essentially all classes of circuit families, cloning
a state cannot be more difficult than generating it. For technical reasons, this lemmas does not
apply to certain pathological classes of circuit families (e.g.: those without the ability to apply the
identity channel), or those representing extremely limited computational power (e.g.: those with a
hard bound on the number of qubits they can process). The idea is that if one is able to generate
a sequence of states, then one way to clone the same sequence is to ignore the input and simply
generate another copy.

Lemma 15. Let C be a class of circuit families satisfying the following criteria:

• The class C can implement the identity on qubits it could generate. More precisely, if C
includes a (0, ℓ)-circuit family C for some ℓ : N → N, then C also includes an (ℓ, ℓ)-circuit
family C id where every circuit in this family implements the identity channel.

• The class C is closed under tensor products. More precisely, given two circuit families (Cn)n∈N
and (C ′n)n∈N in C, then the family (Cn ⊗ C ′n)n∈N is in C.

Then, for all δ : N→ R and a, b ∈ N we have that

state0→1
δ (C) ⊆ state1→2

δ (C). (27)
12Note that [RY21, MY23] also require that a sequence (ρn)n∈N in statePSPACE also satisfies the constraint that

each ρn is on precisely n qubits. However, they state that this is merely for convenience. We drop this requirement
from our definition.
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Proof. Let (ρn)n∈N ∈ state0→1
δ (C). Let C ∈ C and n′ ∈ N be such that

n ≥ n′ =⇒ 1

2
∥ρn − Cn(ε)∥Tr ≤ δ(n). (28)

Consider now the family C ′ = (C id
n ⊗ Cn)n∈N which, by our assumptions, is in C. For all n ≥ n′,

we have that
1

2

∥∥ρ⊗2n − C ′n(ρn)
∥∥
Tr

=
1

2
∥ρn ⊗ ρn − ρn ⊗ Cn(ε)∥Tr ≤

1

2
∥ρn − Cn(ε)∥Tr ≤ δ(n) (29)

and so (ρn)n∈N ∈ state1→2
δ (C).

The second lemma formalizes the idea that there exists sequences of states which cannot be
generated but which can be cloned, even with less computational power. It suffices here to consider
sequences of classical information which cannot be consistently produced with high probability.
Weakly computably ingenerable sequences satisfy these properties.

Lemma 16. Let (sn)n∈N be a weakly computably ingenerable n-sequence. Then, the sequence
(|sn⟩⟨sn|)n∈N is in state1→2(CPOLY) but not in state(CUNIF).

Proof. By definition, (|sn⟩⟨sn|)n∈N is not in state(CUNIF) since every uniform circuit family will
produce the string sn with negligible probability for infinitely many values of n.

On the other hand, let (Cn)n∈N be an (n, 2n)-circuit family where Cn simply appends n qubits
in the |0⟩ state and then applies a CNOT gate on the n + k qubit conditioned on the k qubit for
all k ∈ {1, ..., n}. We see that Cn(|sn⟩⟨sn|) = |sn⟩⟨sn| ⊗ |sn⟩⟨sn|. Since (Cn)n∈N ∈ CPOLY, we have
that (|sn⟩⟨sn|)n∈N ∈ state1→2(CPOLY).

The third and final lemma states that there are sequences of states which simply cannot be
cloned by uniform circuit families. It is obtained as a direct corollary from Theorem 13 and can be
interpreted as a cloning complexity analogue to the existence of uncomputable functions.

Lemma 17. Let (sn)n∈N be a computably ingenerable 2n-sequence where we parse each sn as
(xn, θn) for two strings xn, θn ∈ {0, 1}n. Then, ( |xθnn ⟩⟨xθnn |)n∈N ̸∈ state1→2(CUNIF). By Lemma 15,
this also implies that the sequence is not in state(CUNIF).

Proof. This is a direct corollary of Theorem 13.

Note that the corollary is a strictly weaker statement than the theorem. Indeed, the theorem
demonstrates that it is impossible to clone with non-negligible fidelity, via a uniform family of
circuits, the Wiesner states described by a computably ingenerable sequence. The corollary only
states that it is impossible to clone these states with an overwhelming fidelity. We emphasize that
our results in Section 5 concerning uncloneable quantum advice will require the stronger guarantee
of the form given by the theorem.

5 Uncloneable Advice

The main results of this section are to give a definition for the complexity class of problems which
can be solved by polynomial-time quantum computations with negligible errors in the presence of
advice that is uncloneable and to give examples of problems in this class. We denote this complexity
class neglQP/upoly.

As we briefly discussed in Section 1.1.1, we do not denote this class BQP/upoly; this is because
we lack a generic error reduction technique which can reduce bounded errors to negligible errors, all
the while maintaining the uncloneability property of the advice states. In other words, the current
state-of-the-art is that it is possible that neglQP/upoly ⊆ BQP/upoly is a strict containment.
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Section overview. This section is organized as follows. We begin by reviewing the basic no-
tions of quantum copy-protection in Section 5.1. In Section 5.2, we formally define the notion
of uncloneable advice and give some basic remarks on this definition. We also emphasize some
parallels between quantum copy-protection and uncloneable advice. In Section 5.3, we describe a
promise problem which unconditionally admits uncloneable advice. In Section 5.4, we describe a
language with uncloneable advice, assuming the feasibility of copy-protecting any one sequence of
maps satisfying fairly mild assumptions. In Section 5.5, we discuss one possible instantiation of the
construction presented in Section 5.4.

5.1 Quantum Copy-Protection

As discussed in Section 1, quantum copy-protection is broadly the task of encoding a given func-
tion f as a quantum state ρf such that the following two conditions are satisfied:

• Correctness: A party with access to the quantum state ρf can correctly evaluate f on any
input by interacting with this state in a prescribed manner.

• Security: A party with access to the quantum state ρf cannot create and share a bipartite
quantum state with two other separated parties such that both of these parties could correctly
compute f using any means available to them.

While correctness is required to hold for all inputs, security is defined with respect to a sequence
of random variables D = (Dn)n∈N jointly distributed on all functions considered by the copy-
protection scheme and pairs of inputs to these functions. Security is attained if no efficient attacker
can split the program state for a function f , allowing both subsequent parties to evaluate f(xB)
and f(xC) with more than a negligible advantage when (f, xB, xC) is sampled from D.

We formalize the syntax and correctness guarantee of a copy-protection scheme in Definition 18
below. Security will then be formalized in Definition 23. Up to technical details of presentation, our
definition of the syntax and correctness of a copy-protection scheme coincides with the definition
given in [CLLZ21].13

Definition 18. Let
f =

(
fn : {0, 1}κ(n) × {0, 1}d(n) → {0, 1}c(n)

)
n∈N

(30)

be a sequence of maps whose domains and codomains are parameterized by maps κ, d, c : N→ N.
A copy-protection scheme for f with program length q : N→ N is a pair (G,E) of efficient (κ, q)-

and (q + d, c)-circuit families, respectively.
A copy-protection scheme is correct for f if there exists a negligible function η such that

⟨fn(k, x)|En(Gn(k)⊗ x) |fn(k, x)⟩ ≥ 1− η(n) (31)

for all n ∈ N, all k ∈ {0, 1}κ(n), and all x ∈ {0, 1}c(n).

Note that the existence of a copy-protection scheme for a sequence of maps f as defined above
implies that the maps κ, d, and c are polynomially bounded and efficiently computable. If this was
not the case, there would not exist efficient (κ, q)- and (q + d, c)-circuit families.

Remark 19. The above definition can also be easily adapted to sequences of maps (fn)n∈N where,
for all n ∈ N, the domain of fn is a subset Sn ⊆ {0, 1}κ(n) × {0, 1}d(n). To do so, it suffices to only
require the correctness condition, Equation (31), to hold for pairs (k, x) ∈ Sn.

13The definitions given in [CLLZ21] states that the map f should be pseudorandom function. However, they are
applicable to any such family of maps, not only pseudorandom functions.
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Remark 20. It is possible for a copy-protection scheme to be correct for two different sequences of
maps. Indeed, assume f = (fn)n∈N and f ′ = (f ′n)n∈N are sequences of maps such that fn ̸= f ′n for a
non-zero but finite number of values of n. Then, it is straightforward to show that a copy-protection
scheme (G,E) is correct for f if and only if it is correct for f ′. In short, this is due to the fact that
correctness is an asymptotic property and that fn = f ′n for all sufficiently large values of n.

However, this is the maximal possible discrepancy between f and f ′ in the sense that if (G,E)
is correct for f and f ′, then there must exist a ñ ∈ N such that n ≥ ñ =⇒ fn = f ′n. Indeed, by
the assumed correctness of the scheme for f and f ′, the triangle inequality for the trace distance,
the Fuchs-van de Graaf inequalities, and basic properties of negligible functions, there exists a
negligible function η such that

1

2

∥∥fn(k, x)− f ′n(k, x)∥∥1 ≤√1− ⟨fn(k, x)| ρn,k,x |fn(k, x)⟩+
√
1− ⟨f ′n(k, x)| ρn,k,x |f ′n(k, x)⟩

≤ η(n)
(32)

where ρn,k,x = En(Gn(k)⊗x) for all n ∈ N, all k ∈ {0, 1}κ(n), and all x ∈ {0, 1}d(n). It then follows
that fn = f ′n for all sufficiently large values of n since η(n) < 1 =⇒ fn(k, x) = f ′n(k, x).

An attack against a copy-protection scheme is a triplet of efficient circuit families (A,B,C).
We will sometimes refer to the first, A, as the splitting adversary and the later two, B and C, as
the guessing adversaries. This reflects their respective tasks in the game, described below, used to
define and quantify the notion of security for a copy-protection scheme.

The Copy-Protection Game Let f = (fn)n∈N be a sequence of maps as in Definition 18,
let (G,E) be a copy-protection scheme for f , and let D = (Dn)n∈N be a sequence of random
variables where, for all n ∈ N, each Dn is distributed on the set {0, 1}κ(n) × {0, 1}d(n) × {0, 1}d(n).
The copy-protection security game, for a given n ∈ N in addition to the parameters described
above, is played by a Referee against collaborating Alice, Bob, and Charlie — collectively known
as the adversaries — as follows:

1. The Referee samples a triplet (k, xB, xC)← Dn.

2. The Referee prepares the state ρ = En(k) and gives it to Alice.

3. Alice prepares a bipartite quantum state ρ and gives one part to Bob and the other to Charlie.
This is the only communication between Alice, Bob, and Charlie that occurs during the game.

4. The Referee gives xB to Bob and xC to Charlie. Note that Bob does not receive xC and
Charlie does not receive xB.

5. Bob, with what they have received from the Referee and Alice, outputs a string yB. Similarly,
Charlie outputs a string yC .

6. Alice, Bob, and Charlie win if and only if fn(k, xB) = yB and fn(k, xC) = yC .

Formally, we will model Alice, Bob, and Charlie as efficient circuit families A = (An)n∈N,
B = (Bn)n∈N, and C = (Cn)n∈N respectively. Note that, at this point, we do not impose any
other type of computational restraints on the Referee. In particular, we do not require the random
variables D = (Dn)n∈N to admit an efficient sampling procedure. We formalize this game and the
winning probability of the adversaries in the next definition.
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Definition 21. Let (G,E) be a copy-protection scheme with program lengths q : N → N for a
sequence of maps f = (fn)n∈N as given in Definition 18. An attack against this scheme is a triplet
(A,B,C) of efficient (q, qB + qC)-, (d+ qB, c)-, and (qC + d, c)- circuit families, respectively, for two
maps qB, qC : N → N. For any n ∈ N and triplet (k, xB, xC) ∈ {0, 1}κ(n) × {0, 1}d(n) × {0, 1}d(n),
we define the state

ρ
(A,B,C)
(G,E),n (k, xB, xC) = (Bn ⊗ Cn) (xB ⊗ (An ◦Gn) (k)⊗ xC) . (33)

Let D = (Dn)n∈N be a sequence of random variables where, for each n ∈ N, Dn is distributed
over the set {0, 1}κ(n) × {0, 1}d(n) × {0, 1}d(n). For any attack (A,B,C) against (G,E), we define

its winning probability with respect to f and D, denoted w
(A,B,C)
(G,E),f,D : N→ R, as the function

n 7→
∑

(k,xB ,xC)∈S′
n

Pr [Dn = (k, xB, xC)]·⟨fn(k, xB), fn(k, xC)| ρ(A,B,C)
(G,E),n (k, xB, xC) |fn(k, xB), fn(k, xC)⟩

(34)
where S′n ⊆ {0, 1}κ(n) × {0, 1}d(n) × {0, 1}d(n) is precisely the set of all triplets (k, xB, xC) where
both fn(k, xB) and fn(k, xC) are defined.

If every map fn in f is defined on the entire set {0, 1}κ(n) × {0, 1}d(n), then the summation
over S′n and the Pr [Dn = (k, xB, xC)] factor in Equation (34) is simply an alternative expression
for the expectation over sampling (k, xB, xC) from Dn. Such an expectation is typically how the
winning probability of the adversaries is presented in the literature. However, our definition is also
applicable to cases where some maps fn are defined only on a strict subset of {0, 1}κ(n)×{0, 1}d(n)
and where the support of Dn is a strict superset of S′n. In these cases, the expectation would not
be well defined.

It may seem unnatural to consider w
(A,B,C)
(G,E),f,D for sequences f and D where Dn occasionally

yields pairs (k, x) outside of the domain of fn, but our generalization allows us to easily make sense
of the winning probability of the adversaries when fn : ∅ → {0, 1}c(n) is the empty map. Note
that it is impossible to even define a random variable distributed over the domain of fn or, more
precisely, over S′n = ∅, in this case. Note that we can interpret appearances of the empty map in a
sequence (fn)n∈N as corresponding to cases where the map is undefined.14 This will be useful when
we later relate the notions of copy-protection and uncloneable advice.

In general, we will only be interested in sequences f and D where the support of Dn is a subset
of S′n, unless fn is the empty map.

Remark 22. Let n ∈ N be such that fn : ∅ → {0, 1}c(n) is the empty map, i.e.: S′n = ∅. Then,

adopting the convention that a sum over an empty set is 0, we have that ω
(A,B,C)
(G,E),f,D(n) = 0.

The fact that ω
(A,B,C)
(G,E),f,D(n) = 0 whenever fn is the empty map, meaning that it is “in practice

undefined”, implies that an adversary (A,B,C) breaking the potential security of a copy-protection
scheme must do so for values of n where fn is “in practice defined”. We see this as a desirable
property of our definition.

14While it may be tempting to simply remove all instances of empty maps in a sequence (fn) and then re-index
it, yielding a new sequence (gn), this can can have a material implications to the study of copy-protection for these
maps as it impacts the scaling of the computational power permitted to schemes and adversaries. Indeed, suppose
that the map fn is defined if and only if n = 2k for some k ∈ N. Under the proposed re-indexing scheme, gn = f2n for
all n ∈ N. In particular, if we subject the circuit families of an efficient copy-protection scheme (G,E) for (fn)n∈N to
the same re-indexing, which would be the naive way to try to obtain a scheme for (gn = f2n)n∈N, they may become
exponential-time circuit families.
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Following a standard cryptographic paradigm, we now wish to define the security for a copy-
protection scheme as the property that all efficient adversaries have at most a negligible advantage
over some trivially attainable success probability. The issue here is to identify what precisely is the
trivial success probability in the above described game.

There are a few attacks against copy-protection schemes which cannot reasonably be prevented.
One such attacks, for all n ∈ N, consists of having the splitting adversary An give the complete
and unmodified program state Gn(k) to the guessing party Bn and giving nothing to Cn. When
the adversary Bn receives their challenge xB, they can then honestly evaluate the program state
Gn(k) on xB to obtain, with overwhelming probability assuming that the scheme (G,E) is correct
for f , the proper answer. The Cn adversary, for their part, will simply output a uniformly random
string sampled from {0, 1}c(n), the codomain of the maps under consideration. It is easy to see that
the winning probability of this trivial attack is n 7→ 2−c(n) − η(n) for some negligible function η
accounting for the possibility of an incorrect evaluation by B. Thus, we take 2−c(n) as our trivial
success probability.

Definition 23. Let f = (fn)n∈N be a sequence of maps as given in Definition 18, (G,E) be a
copy-protection scheme for f , and D = (Dn)n∈N be a sequence of random variables as given in
Definition 21. The copy-protection scheme (G,E) is secure with respect to f and D if for every
attack (A,B,C) against it, the function

n 7→ w
(A,B,C)
(G,E),f,D(n)− 2−c(n) (35)

is negligible.

Note that other works present definitions based on alternate notions of trivial success probabil-
ities. For example, [CMP20] permits the splitting adversary An to optimally choose which of Bn

or Cn should received the unmodified program state and further allows the non-receiving guessing
adversary to learn their challenge value x before making their guess for fn(k, x). As this can only
increase the value of the trivial winning probability above 2−c(n), the security notion we present
here is stronger. As another example, [CLLZ21] defines security with respect to a trivial winning
probability which is 0 or negligible. While this is in agreement with our definition if n 7→ 2−c(n) is
negligible, it is an impractical definition to use when this is not the case, such as if c is constant
function.

We leave to future work a more detailed comparison of existing security notions together with
their notions of trivial success probabilities.

5.2 Defining Uncloneable Advice

In this section, we briefly review the necessary preliminaries on complexity theory and then de-
fine the complexity classes neglQP and neglQP/upoly. We generally follow the definitions and
conventions given in Watrous’ survey of quantum complexity theory [Wat09].

First, we recall the definitions of a promise problem and of a language.

Definition 24. A promise problem P = (P0, P1) is a pair of disjoint subsets P0, P1 ⊆ {0, 1}∗. The
elements of P1 are called the yes instances and those of P0 are the no instances. Both yes and
no instances are called problem instances. If P0 ∪ P1 = {0, 1}∗, we say that P is a language and
the elements of P1 are the words of this language. We also establish some additional notation by
overloading the symbol P twice: first as a set, then as a map.

First, we let P = P0 ∪ P1 be the set of all problem instances. For all n ∈ N, we also define the
sets Pn = P ∩ {0, 1}n, Pn

0 = P0 ∩ {0, 1}n, and Pn
1 = P1 ∩ {0, 1}n to be all problem instances of

length n, all no instances of length n, and all yes instances of length n.
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Second, we let P : P0 ∪ P1 → {0, 1} be the unique map satisfying P (x) = 1 ⇐⇒ x ∈ P1. We
identify computing the map P with the ability to solve the problem P . For all n ∈ N, we also
define Pn : Pn

0 ∪ Pn
1 → {0, 1} to be the unique map satisfying Pn(x) = 1 ⇐⇒ x ∈ Pn

1 .

Note that, with the notation of Definition 24, a problem P = (P0, P1) is completely characterized
by the resulting sequence of maps (Pn : Pn

0 ∪ Pn
1 → {0, 1})n∈N.

Before proceeding to defining our novel complexity classes, we recall the classes of problems
which can be solved in quantum polynomial-time with bounded errors, with or without quantum
advice. As usual, we denote these classes by BQP and BQP/qpoly.

Definition 25. Let a, b : N → R be two maps. A promise problem P is in the class BQP(a, b) if
there exists a polynomial-time (n, 1)-circuit family (Cn)n∈N such that the following hold:

1. For all x ∈ P1, we have that ⟨1|C|x|(x) |1⟩ ≥ a(|x|).

2. For all x ∈ P0, we have that ⟨1|C|x|(x) |1⟩ ≤ b(|x|).

Definition 26. Let a, b : N→ R be a map. A promise problem P is in the class BQP(a, b)/qpoly if
there exists a sequence of states (ρn)n∈N, each on q(n) qubits for a polynomially bounded q : N→ N,
and a polynomial-time (q + n, 1)-circuit family (Cn)n∈N such that the following hold:

1. For all x ∈ P1, we have that ⟨1|C|x|(ρ|x| ⊗ x) |1⟩ ≥ a(|x|).

2. For all x ∈ P0, we have that ⟨1|C|x|(ρ|x| ⊗ x) |1⟩ ≤ b(|x|).

By a standard error-reduction-by-repetition argument, we can show that there is a large flexibil-
ity in the choices of a and b without changing the underlying class, so long as these are sufficiently
bounded. Thus, we define BQP = BQP(2/3, 1/3) and BQP/qpoly = BQP(2/3, 1/3)/qpoly.

We are now ready to define our novel complexity classes. We begin by defining the class of
problems which can be solved by polynomial-time quantum computations with negligible errors.
We denote this class neglQP and immediately note that it is equivalent to BQP due to standard
error reduction techniques for this latter class.

Definition 27. A problem P is in the complexity class neglQP if there exists a polynomial-time
circuit family (Cn)n∈N and a negligible function η such that

x ∈ P =⇒ ⟨P (x)|C|x|(x) |P (x)⟩ ≥ 1− η(|x|). (36)

Lemma 28. neglQP = BQP.

Proof. The inclusion BQP ⊆ neglQP follows directly by the standard error reduction technique
for BQP. It then suffices to show that the inclusion neglQP ⊆ BQP also holds.

Consider a problem P ∈ neglPQ which is solved by a polynomial-time circuit family (Cn)n∈N
with negligible error η. In particular, there exists an n0 ∈ N such that n ≥ n0 =⇒ η(n) ≤ 1

3 .
Thus, we can consider a new circuit family (C ′n)n where each C ′n for n < n0 simply “hard codes”
each solution to each problem instance. Otherwise, if n ≥ n0, we simply take C ′n = Cn. It is easy
to see that (C ′n)n∈N is a polynomial-time circuit family which solves P with error at most 1

3 . Hence,
we have that P ∈ BQP and so that neglQP ⊆ BQP.

We can now state our definition for the complexity class of problems which can be solved with
negligible error by polynomial-time quantum computation with the help of uncloneable advice,
which we denote neglQP/upoly.
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As we have previously discussed in Section 1.1.1, a problem P is in neglQP/upoly if there
exists a sequence of advice states (ρn)n∈N satisfying the following two criteria. First, an honest
user must be able to solve problem instances in P with negligible errors when given a single copy
of the advice state. Second, a malicious user given a single copy of the advice state cannot share
this state between two other non-communicating malicious users such that they could both solve
problem instances in P with more than a negligible advantage. We highlight once again that this
is analogous to the security criteria of a copy-protection scheme as set out in Definition 23.

The following definition formalizes the above.

Definition 29. A problem P = (P0, P1) is in the complexity class neglQP/upoly if there exists a
sequence of quantum states (ρn)n∈N, each on q(n) qubits respectively for a polynomially bounded
map q : N→ N, such that the following two conditions hold:

1. Correctness. There exists a polynomial-time (q+n, 1)-circuit family (Cn)n∈N and a negligible
function η such that

x ∈ P =⇒ ⟨P (x)|C|x|
(
ρ|x| ⊗ x

)
|P (x)⟩ ≥ 1− η(|x|). (37)

2. Uncloneability. For each n ∈ N, let

kn =

{
1 if either Pn

0 or Pn
1 is empty

1
2 else.

(38)

and let Dn be a random variable distributed on {0, 1}n such that for both b ∈ {0, 1} we have
that

x ∈ Pn
b =⇒ Pr[Dn = x] = kn ·

1∣∣Pn
b

∣∣ . (39)

Then, for all triplets (A,B,C) of polynomial-time (q, qB + qC)-, (n+ qB, 1)-, and (qC + n, 1)-
circuit families, respectively, there exists a negligible function η′ such that for all n ∈ N
satisfying Pn ̸= ∅ we have that

E
(xB ,xC)←Dn×Dn

⟨P (xB), P (xC)| (Bn ⊗ Cn) (xb ⊗An(ρn)⊗ xc) |P (xB), P (xC)⟩ ≤
1

2
+ η′(n).

(40)

Note that 1
2 in the equation above plays the same role as the 2−c(n) term in the definition of

security for copy-protection: it captures the maximal winning probability of strategies which give
the advice unmodified to one guessing party and has the other guessing party output an element
uniformly at random from the appropriate codomain.

We give a few other remarks on this definition.

Remark 30. It would be possible to strengthen Definition 29 by weakening the computational
constraints on the adversaries considered in uncloneability criterion. While we do not formally
define these variations here, we note that the advice we construct in the proof of Theorem 35 for
the particular promise problem defined in that theorem would fulfill the uncloneability criterion
against any uniform adversaries, not only polynomial-time adversaries.

Remark 31. For a given problem P , the sequence of distributions (Dn)n∈N considered in point 2
of Definition 29 is not uniquely defined. Indeed, for a particular n ∈ N, the random variable Dn

is uniquely defined if P ∩ {0, 1}n ̸= ∅ and is unconstrained otherwise. However, our definition is
insensitive to Dn for the values of n where P ∩ {0, 1}n = ∅ and so this ambiguity is not an issue.
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Remark 32. Our definition of the sequence of distributions D in point 2 of Definition 29 could be
changed, leading to possibly distinct complexity classes.

Note that while we define random variables Dn over Pn, in Equation (40) we actually use the
random variables Dn ×Dn over {0, 1}n × {0, 1}n. In particular, any other definition of a sequence
of distributions (D′n)n∈N on {0, 1}n × {0, 1}n, provided that it satisfy

∀n ∈ N Pn ̸= ∅ =⇒ Pr
[
D′n ∈ Pn × Pn

]
= 1, (41)

could replace the sequence (Dn×Dn)n∈N in Definition 29 and the definition would remain coherent.
We note, however, that the choice of kn on the right-hand side of Equation (40) may no longer
be the most appropriate for certain choices of distributions. Requiring the distributions to satisfy
Equation (41) simply enforces the condition that the adversaries should be challenged on elements
of P with certainty.

We emphasize here that the distributions Dn depend on the problem P . If we wish to consider
promise problems which are not languages, then it seems natural that the distributions depend
on P . Indeed, if the distributions did not depend on P , it is unclear what we should ask of the
adversaries when they are challenged on inputs which are not in P . While there are sensible
answers to this question, such as considering any output to be valid or not consider these cases
when computing the success probability of the adversaries, we leave further discussions along these
lines to future work.

We highlight three other natural ways in which we could have defined the distributions from
which the problem instances (x0, x1) are sampled. These emerge from the four possible ways to
answer the following two questions:

• Should x0 and x1 be equal, or sampled independently?

• Should the challenges be sampled uniformly at random from Pn, or in such a way which
makes 0 and 1 equally likely to be the correct answers (when possible)?

Our choice for the distributions results from taking the latter answer to both questions.
Finally, we note that this discussion on which distributions to use when challenging the ad-

versaries for the uncloneability criterion echoes extremely similar discussions pertaining to secure
software leasing [ALP21, BJL+21] and copy-protected functions [CMP20].

With Definition 29 in hand, we can now formalize the relation between copy-protection and
uncloneable advice. Let (G,E) be a pair of circuit families forming a copy-protection scheme
as defined in Definition 18, except that G need not be efficient, or even uniform: G can be an
arbitrary circuit family. Call such a scheme a copy-protection scheme with unconstrained generation.
Correctness and security for copy-protection schemes with unconstrained generation is exactly
as defined for usual copy-protection schemes. The next theorem states that a problem P is in
neglQP/upoly if and only if there exists a copy-protection with unconstrained generation (G,E)
which is correct and secure for the sequence of maps (Pn : Pn

0 ∪ Pn
1 → {0, 1})n∈N with respect to

random variables D = (Dn)n∈N as described in Definition 29.

Theorem 33. Let P be a problem and let D = (Dn)n∈N be a sequence of random variables as
described in Definition 29. For all n ∈ N, let P̃n : {0, 1}0× (Pn

0 ∪ Pn
1 )→ {0, 1} be the map defined

by P̃n(ε, x) = Pn(x) for all x ∈ Pn
0 ∪ Pn

1 and let D̃n be the random variable defined by

Pr
[
D̃n = (ε, xB, xC)

]
= Pr [Dn ×Dn = (xB, xC)] . (42)
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Then, P is in neglQP/upoly if and only if there exists a copy-protection scheme with unconstrained
generation (G,E) for the sequence of maps P̃ = (P̃n)n∈N which is correct and secure with respect
to the distributions D̃ = (D̃n)n∈N.

Prood sketch. Assume that P is in nelgQP/upoly by using the sequence of advice states (ρn)n∈N.
By the correctness condition of neglQP/upoly, there exists an efficient circuit family C = (Cn)n∈N
and a negligible function η such that x ∈ P =⇒ ⟨P (x)|Cn(ρ|x|⊗x) |P (x)⟩ ≥ 1− η(|x|). Moreover,

there exists a circuit family G = (Gn)n∈N such that 1
2∥ρn −Gn(ε)∥1 ≤ 2−n.15 Consider now (G,C)

as a copy-protection scheme with unconstrained generation for (P̃n)n∈N. We note two things:

1. The correctness of the advice directly implies the correctness of (G,C) for (P̃n)n∈N.

2. The uncloneability of the advice implies that the scheme (G,C) is secure for (P̃n)n∈N with
respect to (D̃n)n∈N.

Indeed, adversaries against the scheme (G,C) are precisely adversaries against the advice
states (ρn)n∈N for the uncloneability criterion of neglQP/upoly and the winning probability
of such an adversary is identical in both scenarios for those values of n satisfying Pn ̸= ∅. As
the advice is uncloneable, we have that for all adversaries (A,B,C) there exists a negligible

function η such that Pn ̸= 0 =⇒ ω
(A,B,C)

(G,C),P̃ ,D̃
(n) ≤ 1

2 +η(n). Moreover, by definition, we have

that ω
(A,B,C)

(G,C),P̃ ,D̃
(n) = 0 whenever Pn = ∅. It follows that n 7→ ω

(A,B,C)

(G,C),P̃ ,D̃
− 1

2 is negligible and

so (G,C) is secure for P̃ with respect to D̃.

For the other direction, assume that (G,E) is a copy-protection scheme with unconstrained
generation for (P̃n)n∈N which is correct and secure with respect to (D̃n)n∈N. Now, for all n ∈ N
define the states ρn = Gn(ε). It follows that we can show that P is in neglQP/upoly with the help
of the advice states (ρn)n∈N since correctness and security of the copy-protection scheme directly
imply correctness and security of the uncloneable advice.

As a final remark for this section, we note that the intersection of BQP and neglQP/upoly
can only contain essentially trivial problems.

Proposition 34. A problem P is in BQP ∩ neglQP/upoly if and only if |P | is finite.

The proof of this proposition reduces to two ideas. First, if P ∈ BQP then it can solved with
the empty state 1 ∈ D(C) as advice. Second, the empty state is perfectly cloneable. Or, more
precisely, two copies of the empty state can be easily produced from any other state.

Proof. Assume that P is a problem such that |P | is finite. Then, it is trivially true that P ∈ BQP.
This can be shown by considering a circuit family (Cn)n∈N where each Cn has a “hard-coded” list
of the elements of Pn

0 which can then be used to solve all problem instances of length n by simply
checking if the instance is in Pn

0 or not. As |P | is finite, this can be implemented efficiently. On
the other hand, let m ∈ N be the maximal length of the elements in P , i.e.: x ∈ P =⇒ |x| ≤ m.
Consider the negligible function η : N→ R defined by η(n) = 1 if n ≤ m and η(n) = 0 if n > m and
the sequence of empty states (ρn = 1)n∈N. Correctness and uncloneability as given in Definition 29
holds with respect to this sequence of states and this negligible function. Thus, P ∈ neglQP/upoly.

15It may be that it is impossible to achieve ρn = Gn(ε) for all n due to the underlying gate set from which G is
constructed. This negligible error is not an issue as both correctness and security of uncloneable advice is defined up
to negligible errors.
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Assume that P ∈ BQP and P ∈ neglQP/upoly where the second inclusion is obtained with
respect to the sequence of advice states (ρn)n∈N. Let C = (Cn)n∈N be an efficient (n, 1)-circuit
family and η be a negligible function such that x ∈ P =⇒ ⟨P (x)|C|x|(x) |P (x)⟩ ≥ 1− η(|x|). Such
a negligible function and circuit family exists by virtue of P being in BQP. Consider now the
triplet of efficient circuit families (A,C,C) where each circuit An simply discards its input. Finally,
let (Dn)n∈N be a sequence of random variables as defined in Definition 29. As the circuit family C
solves P with negligible error on all inputs and P is assumed to be in neglQP/upoly, there exists
another negligible function η′ such that for all n ∈ N satisfying Pn ̸= ∅ we have

1−2η(n) ≤ E
(xB ,xC)←Dn×Dn

⟨P (xB), P (xC)| (Cn ⊗ Cn) (xB ⊗An(ρn)⊗ xC) |P (xB), P (xC)⟩ ≤
1

2
+η′(n),

(43)
implying that 1

2 ≤ η
′(n) + 2η(n). Since η′ and η are negligible, this inequality can hold for at most

finitely many values of n. Thus, Pn = ∅ for all sufficiently large values of n, implying that |P | is
finite.

5.3 A Promise Problem with Uncloneable Advice, Unconditionally

In this section, we formally describe the promise problem with uncloneable advice which was
discussed in Section 1.1.4. The goal is to prove the following theorem.

Theorem 35. Let (sλ)λ∈N be an exponential-time ingenerable 2λ-sequence and parse each sλ as a
pair of strings of length λ, i.e.: sλ = (xλ, θλ) for xλ, θλ ∈ {0, 1}λ for all λ ∈ N. For each b ∈ {0, 1},
let

Pb =
⋃
λ∈N

{
(θλ, y) : y ∈ {0, 1}λ ∧ xλ · y = b

}
. (44)

Then, the promise problem P = (P0, P1) is in neglQP/upoly.

We prove this theorem by first collecting three lemmas, each encapsulating one step of the
argument we made above.

We begin by recalling a lemma concerning the monogamy-of-entanglement game of [TFKW13].16

Lemma 36 ([TFKW13]). Let n, aB, aC ∈ N be three non-negative integers and let (A,B,C) be a
triplet of (n, aB + aC)-, (aB + n, n)-, and (aC + n, n)-circuits, respectively. Then, we have that

E
x←{0,1}n
θ←{0,1}n

⟨x, x| (B ⊗ C)
(
θ ⊗A

(
|xθ⟩⟨xθ|

)
⊗ θ
)
|x, x⟩ ≤

(
1

2
+

1

2
√
2

)n

< 0.86n. (45)

As for Lemma 12, this lemma holds for any triplet of channels, but we frame it in terms of
exponential-time circuits to maintain consistency with the rest of this work and, in particular, this
section. Now, we “derandomize” the above, analogously to how we previously obtained Theorem 13.

Lemma 37. Let (sλ)λ∈N be an exponential-time ingenerable 2λ-sequence and parse each sλ as a
pair of strings of length λ, i.e.: sλ = (xλ, θλ) for xλ, θλ ∈ {0, 1}λ for all λ ∈ N.

Then, for any triplet ((Aλ)λ∈N, (Bλ)λ∈N, (Cλ)λ∈N) of exponential-time (λ, b+c)-, (λ+b, λ)-, and
(c+ λ, λ)-circuit families for maps b, c : N→ N, respectively, we have that

λ 7→ ⟨xλ, xλ| (Bλ ⊗ Cλ)
(
θλ ⊗Aλ

(
|xθλλ ⟩⟨x

θλ
λ |
)
⊗ θλ

)
|xλ, xλ⟩ (46)

is negligible.
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Figure 3: A schematic representation of the C̃λ circuit constructed in the proof of Lemma 37. The wires
are labelled, when possible, with the states they are expected to carry in the context of the proof. Every
wire represents λ qubits, except the initial wire, final wire, and those between the Aλ, Bλ, and Cλ circuits.
These represent, respectively, 2λ, 1, bλ, and cλ qubits.

Proof. It suffices to apply Theorem 10 to Lemma 36. We follow the same general ideas as in the
proof of Theorem 13.

Let (Sλ)λ∈N be a polynomial-time family of (2λ, 4λ)-circuits such that each circuit, on input of
x⊗θ, outputs the state x⊗θ⊗

∣∣xθ〉〈xθ∣∣⊗θ for any x, θ ∈ {0, 1}λ. Let (Rλ)λ∈N be a polynomial-time
family of (3λ, 1)-circuits where each circuit measures all of its input qubits in the computational
bases, parses it as three strings of length λ, and outputs 1 if all three are equal and 0 otherwise.

We now consider the exponential-time family of (2λ, 1)-circuits (C̃λ)λ∈N such that, for all λ ∈ N,
C̃λ is the composition of the Aλ, Bλ, Cλ, Sλ, and Rλ circuits such that the resulting channel is
given by

C̃λ = Rλ ◦ (Idλ ⊗Bλ ⊗ Cλ) ◦ (Idλ ⊗ Idλ ⊗Aλ ⊗ Idλ) ◦ Sλ. (47)

This composition is illustrated in Figure 3. Trivial calculations shows that for all x, θ ∈ {0, 1}λ we
have that

⟨1| C̃λ(x⊗ θ) |1⟩ = ⟨x, x| (Bλ ⊗ Cλ)
(
θ ⊗Aλ( |xθ⟩⟨xθ|)⊗ θ

)
|x, x⟩ (48)

In particular, by Lemma 36,

E
x←{0,1}λ
θ←{0,1}λ

⟨1| C̃λ(x⊗ θ) |1⟩ ≤
(
1

2
+

1

2
√
2

)λ

(49)

is a negligible function. Thus, by Theorem 10 and the fact that (sλ)λ∈N is an exponential-time
ingenerable 2λ-sequence, the function λ 7→ ⟨1| C̃λ(xλ ⊗ θλ) |1⟩ is also negligible which, by Equa-
tion (48), is the desired result.

Finally, we can apply Lemma 1 to show that any exponential-time adversaries will have a
negligible advantage in determining the inner product of xλ with uniformly random strings y.

16This particular form of the lemma was first stated, essentially, in [BL20]. However, it is an immediate corollary
of a more general result found in [TFKW13] obtained by exploiting the operational relation between measuring half
an EPR pair [EPR35] and sending a random Wiesner state.
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Lemma 38. Let (sλ)λ∈N be an exponential-time ingenerable 2λ-sequence and parse each sλ as
a pair of strings of length λ, i.e.: sλ = (xλ, θλ) for two strings xλ, θλ ∈ {0, 1}λ for all λ ∈ N.
Then, for any triplet ((Aλ)λ∈N, (Bλ)λ∈N, (Cλ)λ∈N) of exponential-time (λ, b + c)-, (2λ + b, 1)-, and
(c+2λ, 1)-circuit families, respectively and for maps b, c : N→ N, there exists a negligible function
η such that

E
yB←{0,1}λ
yC←{0,1}λ

⟨xλ · yB, xλ · yC | (Bλ ⊗ Cλ) (yB ⊗ θλ ⊗ σλ ⊗ θλ ⊗ yC) |xλ · yB, xλ · yC⟩ =
1

2
+ η(λ) (50)

where σλ = Aλ

(
|xθλλ ⟩⟨x

θλ
λ |
)
.

Proof. In the notation of Lemma 1, we let ξλ be the random variable distributed on {0, 1}λ×{0, 1}λ
such that Pr[ξλ = (xλ, xλ)] = 1 and we let ρλ,xλ,xλ

= θλ ⊗ σλ ⊗ θλ.
Lemma 37 implies that for every pair ((B′λ)λ∈N, (C

′
λ)λ∈N) of exponential-time (λ + b, λ)- and

(c+ λ, λ)-circuits, respectively, the function

λ 7→ ⟨xλ, xλ| (B′λ ⊗ C ′λ)(ρλ,xλ,xλ
) |xλ, xλ⟩ (51)

is negligible. Since the support of ξλ is {(xλ, xλ)}, the premise of Lemma 1 is satisfied. Thus,

λ 7→ E
yB←{0,1}λ
yC←{0,1}λ

⟨xλ · yB, xλ · yC | (Bλ ⊗ Cλ) (yB ⊗ ρλ ⊗ yC) |xλ · yB, xλ · yC⟩ −
1

2
(52)

is also negligible. Taking η to be this map and expanding the definition of ρλ yields the result.

We give a final technical lemma concerning exponential-time ingenerable sequences before prov-
ing the theorem.

Lemma 39. Let (sλ)λ∈N be an exponential-time ingenerable 2λ-sequence and parse each sλ as
(xλ, θλ) for two strings xλ, θλ ∈ {0, 1}λ. Then, there exists a λ̃ such that λ ≥ λ̃ implies that
xλ ̸= 0λ.

Proof. Assume this was not the case and xλ = 0λ infinitely often. Consider now the polynomial-time
circuit family (Cλ)λ∈N such that Cλ samples a uniformly random y ∈ {0, 1}λ and outputs (0λ, y).
Then, ⟨sλ|Cλ(ε) |sλ⟩ = 2−λ infinitely often. But, since (sλ)λ∈N is exponential-time ingenerable,
there exits a polynomial p such that ⟨sλ|Cλ(ε) |sλ⟩ < p(n)2−2λ for all sufficiently large values of λ.
This implies that 2λ < p(λ) infinitely often, a contradiction. Hence, xλ = 0λ only finitely often.

We can now give the proof of Theorem 35. Note that we will use ν as our main indexing
variable and set ν = 2λ whenever ν is even. This will make the notation pertaining to λ a bit more
consistent when invoking the previous lemma.

Proof of Theorem 35. Define the sequence of states (ρν)ν∈N as

ρν =

{
|xθλλ ⟩⟨x

θλ
λ | if ν = 2λ for λ ∈ N

ε else.
(53)

for all ν ∈ N. We will use these states as the advice for P . Let a : N→ N be such that a(λ) is the
number of qubits in the advice state ρν . Note that a(ν) = λ if ν = 2λ and q(ν) = 0 otherwise.

Correctness. To show the correctness criterion, we give an explicit polynomial-time circuit
family which solves P with certainty when given these advice states. Let (Cν)ν∈N be the polynomial-
time (a+ ν, 1)-circuit family which is described below:
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(b) The circuit C4. The advice state is inputted in
the A register and the problem instance in the other
registers.

Figure 4: The circuits Cν for ν = 3, 4 used in the proof of Theorem 35 to demonstrate correctness.

• If ν is odd, Cν discards the input and outputs a single qubit in the 0 state.

• If ν = 2λ is even, Cν does the following:

1. Parse the q(ν) + ν = 3λ input qubits as three registers A⊗ B⊗ S of λ qubits each.

2. For each i ∈ [λ], apply a Hadamard gate H on the i-th qubit of A conditioned on the
i-th qubit of B.

3. Using an extra qubit initialized in the 0 state, which we will call the R register, compute
the inner product of the A and S registers and store the result in the R register. We do
this by applying λ Toffoli gates on R, each conditioned on the i-th qubits of A and S,
respectively, for each i ∈ [λ].

4. Discard the A, B, and S registers and output the R register.

Examples of these circuits, for ν = 3 and ν = 4, are illustrated in Figure 4. For all λ ∈ N and all
string y ∈ {0, 1}λ, a trivial calculation yields

C2λ (ρ2λ ⊗ θλ ⊗ y) = C2λ

(
|xθλλ ⟩⟨x

θλ
λ | ⊗ θλ ⊗ y

)
= xλ · y = P (θλ, y) (54)

Thus, for any z ∈ P , which must be of the form z = (θλ, y) for some y ∈ {0, 1}λ, we have that C|z|
correctly computes P (z) with certainty when also given the advice state ρ|z|. Hence, the correctness
criterion is satisfied.

Uncloneability. Our first step in showing that these advice states satisfy the uncloneability
criterion is to gain a better understanding of the sequence of distributions (Dν ×Dν)ν∈N, as given
in Definition 29, for this promise problem.

Recall that by Lemma 39, there are only finitely many instances where xλ = 0λ. This implies
that for each b ∈ {0, 1} and all sufficiently large values of λ, the set P 2λ

b is exactly half of P 2λ.
Indeed, this follows from the fact that

∣∣{y ∈ {0, 1}λ : x · y = b}
∣∣ is 2λ−1 precisely when x ̸= 0λ.

This is to say that, for all sufficiently large λ, there are always as many yes instances as no instances
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of length 2λ. In particular, for all sufficiently large values of λ, the random variable D2λ is uniformly
random over P 2λ = {θλ} × {0, 1}λ.

Now, consider a triplet ((Aν)ν∈N, (Bν)ν∈N, (Cν)ν∈N) of polynomial-time (q, b+ c)-, (2λ+ b, 1)-,
and (c + 2λ, 1)-circuit families, respectively and for maps b, c : N → N. Let v : N → R be the
function given by

v(λ) = E
(zB ,zC)←D2λ×D2λ

⟨P (zB), P (zC)| (B2λ ⊗ C2λ) (zB ⊗A2λ (ρ2λ)⊗ zC) |P (zB), P (zC)⟩ . (55)

In other words, v(λ) is the probability that the triplet of circuit families split and successfully using
the advice state to solve problem instances in P 2λ sampled according to D2λ ×D2λ. To show that
the uncloneability criterion is satisfied, it suffices so show the existence of a negligible function η
such that v(λ) ≤ 1

2 + η(λ) as, in the notation of Definition 29, it will then suffice to take η′ to be
function such that η′(ν) = 0 if ν is odd and η′(λ) if ν = 2λ is even. Clearly, this η′ will be negligible
if v is negligible.

For L ∈ {A,B,C}, let L′λ = L2λ and note that (Lλ)λ∈N is a polynomial-time family of circuits.
Now, since the random variable D2λ is uniformly distributed on {(θλ, y) : y ∈ {0, 1}λ} for all
sufficiently large values of λ, we have that

v(λ) = E
yB←{0,1}λ
yC←{0,1}λ

⟨xλ · yB, xλ · yC | (B′λ ⊗ C ′λ)
(
θλ ⊗ yB ⊗A′λ(ρ2λ)⊗ θλ ⊗ yC

)
|xλ · yB, xλ · yC⟩ (56)

for all sufficiently large values of λ. Up to performing the swapping map θλ ⊗ yB 7→ yB ⊗ θλ on
the first 2λ qubits given to B′λ, an operation which can easily be incorporated into this circuit,
Lemma 38 implies the existence of a negligible function η̃ such that the right-hand side of the
above equation is precisely 1

2 + η̃(λ). Since v(λ) is equal to 1
2 + η̃(λ) for all sufficiently large

values of λ, there exists a function η : N→ R which differs from η̃ on only finitely many inputs such
that v = 1

2+η. Since η differs only finitely often from a negligible function, it is itself negligible.

Remark 40. If the language in Theorem 35 is instantiated with an exponential-time ingenerable
sequence (sn)n∈N which satisfies the stronger notion of being computably ingenerable, then the
advice states given in the proof also satisfy uncloneability against uniform adversaries.

On the other hand, if the language is instantiated with an exponential time ingenerable se-
quences which can be computed in triple-exponential time, then we note that the advice states
can be generated by quantum circuits described by a Turing machine running in triple-exponential
time. By Theorem 9, such sequences exist.

Note that the advice states which we give in the proof of Theorem 35 are quantum but, in
some sense, the advice is actually the classical strings (xn)n∈N. We encode this classical advice into
a quantum state only to achieve uncloneability, not additional computational power. With this
in mind, the following proposition formalizes the idea that uncloneable advice need not be more
powerful than classical advice.

Proposition 41. The intersection of neglQP/upoly and P/poly, where the latter is the class
of promise problems which can be solved in polynomial-time by a classical deterministic Turing
machine with access to polynomially many classical bits of advice, is non-empty.

Proof sketch. The promise problems constructed in Theorem 35, which states that these problems
are in neglQP/upoly, can also be seen to be in P/poly. Indeed, if the problem is instantiated
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with the exponential-time ingenerable 2n-sequence (sn = (θn, xn))n∈N, then the classical advice
strings (s′n)n∈N defined by

s′n =

{
xn if n is even

ε else
(57)

are sufficient to show that the problem constructed in Theorem 35 is also in P/poly.

Similarly, it is clear that if a classical party has enough computational power to generate the
sequence (sn)n∈N or, more precisely, the sequence (xn)n∈N, then it can solve the promise problem
constructed in Theorem 35 from (sn)n∈N.

Proposition 42. The intersection of neglQP/upoly and EEEXP, where the latter is the class of
promise problems which can be solved in triple-exponential time by a classical deterministic Turing
machine, is non-empty.

Proof sketch. Some instantiations of the promise problems constructed in Theorem 35, which states
that these problems are in neglQP/upoly, can be seen to be in EEEXP. Indeed, if the exponential-
time ingenerable sequence (sn)n∈N used in the construction is computable in triple-exponential time
by a classical deterministic Turing machine, then the resulting promise problem is in EEEXP. By
Theorem 9, such sequences exist.

Propositions 41 and 42 immediately point to an open question which we believe is of interest:
Are there non-trivial problems, i.e.: with infinitely many yes and no instances, in the intersection
of neglQP/upoly and EEXP, the class of problems which can be solved by classical deterministic
Turing machines in double exponential time? What about in the intersection of neglQP/upoly
and EXP or any other classical deterministic super-polynomial time complexity classes? These
questions appear to reflect those considered in Section 4 about gaps in the complexity of generating
and cloning sequences of states.

5.4 A Language with Uncloneable Advice, Under Certain Assumptions

In this section, we describe a class of languages which admit uncloneable advice under the assump-
tion that it is possible to copy-protect certain families of maps. We proceed in two steps. First,
we give a general template in Definition 43 for the class of languages we consider. Each language
from this template is parameterized by a sequence of maps and is illustrated in Figure 5. Second,
in Theorem 45, we establish sufficient conditions on the parametrizing maps which ensure that the
resulting language admits uncloneable advice. We comment, in the next section, on certain specific
instantiations of this language admitting uncloneable advice based on existing constructions for the
copy-protection of pseudorandom functions.

Definition 43. Let g = (gn : {0, 1}d(n) → {0, 1}c(n))n∈N be a sequence of maps whose domains and
codomains are parameterized by d, c : N→ N. We define the language Lg = (Lg

0, L
g
1) as follows:

• If w ∈ {0, 1}∗ is such that |w| ≤ (d+ c)(|w|), then

w ∈ Lg
b ⇐⇒ w · w = b. (58)

• If w ∈ {0, 1}∗ is such that |w| > (d+ c)(|w|), we parse w as (x, y, z) where x is composed of
the first d(|w|) bits of w, y of the next c(|w|) bits, and z of the remaining bits. Then,

w = (x, y, z) ∈ Lg
b ⇐⇒ (g|w|(x) · y)⊕ (z · z) = b. (59)
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w

x y z (g|w|(x) · y)⊕ (z · z)

w w · w

|w|
?
> (c+ d)(|w|)

Yes

No

Figure 5: An illustration of an algorithm which determines if a given string w ∈ {0, 1}∗ is in the set Lg
0 or

the set Lg
1 where these are as given in Definition 43. The single bit produced, at the right of the diagram,

determines to which set w belongs. In the case where the criterion |w| > (d+ c)(|w|) is met, we parse w as
a triplet of strings (x, y, z), each of the unique length ensuring that (g|w|(x) · y)⊕ (z · z) is well defined.

We note a nice property of Lg which is independent of the choice of g, namely that exactly half
of all bit strings of a given non-zero length are in the language.

Lemma 44. Let Lg = (Lg
0, L

g
1) be as given in Definition 43. Then, for all n ≥ 1 we have that

|Lg
0 ∩ {0, 1}

n| = |Lg
1 ∩ {0, 1}

n| = 2n−1. (60)

In other words, for any given non-zero length n, there are as many yes instances as there are no
instances of length n in Lg.

Proof. This follows immediately from the fact that for all n ≥ 1 and b ∈ {0, 1} we have that

|{s ∈ {0, 1}n : s · s = b}| = 2n−1. (61)

We now establish conditions under which the language Lg defined above admits uncloneable
advice.

Theorem 45. Let f = (fn : {0, 1}κ(n)×{0, 1}d(n) → {0, 1}c(n))n∈N be a sequence of maps whose do-
mains and codomains are parameterized by maps κ, d, c : N→ N such that the following conditions
are satisfied:

• There exists an n′ ∈ N such that n ≥ n′ =⇒ d(n) + c(n) < n and c ∈ ω(log).

• There exists a copy-protection scheme (G,E) for f which is correct and secure.

Let k = (kn)n∈N be an exponential-time ingenerable κ-sequence and let g = (gn)n∈N be the sequence
of maps where gn = fn(kn, ·) for all n ∈ N. Then, the language Lg is in neglQP/upoly.

At a high level, the proof proceeds as follows: The advice states will be the program states
generated by the copy-protection scheme for the maps in the sequence g. Correctness follows
trivially from the correctness of the copy-protection scheme. Uncloneability is a bit more involved.
Consider only the cases where n ≥ n′ and so any string w will be parsed as (x, y, z). The first
step is to argue that the z component does not really contribute to the difficulty of determining
if w is in the language. The only difficult part is for both guessers to be able to correctly and
simultaneously compute gn(x) · y. Since the y’s are independently sampled for both guessers,
the result of Kundu and Tan (Lemma 1) tells us that if both parties can only compute gn(x)
with a negligible probability of success, then they can simultaneously correctly compute this inner
product with at most a negligible advantage above 1

2 . How can we show that this probability of
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simultaneously guessing gn(x) on independent values of x is negligible? It suffices to derandomize
the copy-protection game with the exponential-time ingenerable sequence (kn)n∈N. More precisely,
since the advice states are produced from a secure copy-protection scheme for maps where the
trivial guessing probability 2−c is trivial (as c ∈ ω(log)), we know that any efficient adversaries will
fail to simultaneously and correctly compute fn(k

′, x) with more than a negligible probability if the
key k′ is uniformly random (but identical for both adversaries) and where x is uniformly random
and independent for both adversaries. By Theorem 10, the probability will remain negligible
even when we do not sample k′ uniformly at random, but rather fix it to the n-th element of an
exponential-time ingenerable κ-sequence.

Proof. Assume the copy-protection scheme (G,E) has program length q. We will consider the
sequence of states

ρ = (ρn = Gn(kn))n∈N , (62)

which are the program states produced by the copy-protection scheme (G,E) for the maps (gn)n∈N,
as our advice for this language.

Correctness. We first show correctness. This follows directly from the assumed correctness of
the copy-protection scheme (G,E). In short, we implement the algorithm shown in Figure 5 while
using ρn and En to evaluate gn. More explicitly, let C = (Cn)n∈N be the efficient (q + n, 1)-circuit
family where each Cn implements the following algorithm on input of ρ⊗ w:

1. Verify if n ≤ d(n) + c(n).

• If this inequality holds, output the bit w · w and terminate.

• If this inequality does not hold, execute steps 2 to 4 below.

2. Parse w as a triplet (x, y, z) where x is the first d(n) bits, y the subsequence c(n) bits, and z
the remaining n− d(n) + c(n) bits.

3. Run En(ρn⊗x) and measure the output in the computational basis. Let y′ denote this result.

4. Output the bit (y′ · y)⊕ (z · z) and terminate.

If n ≤ d(n) + c(n), then Cn(ρn ⊗ w) outputs the correct bit, namely w · w, with probability 1.
Else, Cn(ρn ⊗ w) outputs the correct bit with a probability at least

⟨gn(x)|En(ρn ⊗ x) |gn(x)⟩ = ⟨fn(kn, x)|En (Gn(kn)⊗ x) |fn(kn, x)⟩ (63)

which is the probability that step 3 correctly evaluates to gn(x). Since (G,E) is correct, there
exists a negligible function ηc such that this probability is at least 1−ηc(n). Hence, the correctness
criterion is satisfied.

Uncloneability. First, let’s set up an adversary and state what is sufficient to show to demon-
strate the uncloneability criterion.

Let (A,B,C) be a triplet of polynomial-time (q, qB + qC)-, (d+ qB, 1)-, and (qC + d, 1)-circuit
families, respectively, for maps qB, qC : N → N. Let Dn be the random variable distributed on
the set {0, 1}n as defined in Definition 29 for the language Lg. Note that, by Lemma 44, Dn is
uniformly distributed. Let

v(n) = E
wB ,wC←Dn

⟨Lg(wB), L
g(wC)| (Bn ⊗ Cn) (wB ⊗An(ρn)⊗ wC) |Lg(wB), L

g(wC)⟩ (64)

be the probability that the adversaries (A,B,C) succeed in sharing the advice state ρn and use it
to correctly determine the membership of two independent problem instances of length n sampled
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according to Dn. It suffices to show the existence of a negligible function η such that v ≤ 1
2 + η. In

fact, it suffices to show that this inequality holds for all n ≥ n′ where, we recall, n′ is a threshold
after which n < d(n) + c(n) always holds. Assume from now on that n ≥ n′ is always satisfied and
parse every w ∈ {0, 1}n as a triplet (x, y, z) where x is the first d(n) bits, y the subsequent c(n)
bits, and z the remaining bits.

Now, as a first step, we argue that the z component of a problem instances essentially does not
matter. In the process, we will express v(n) in a form which will be closer to something to which
we can apply Lemma 1.

Let B′ be a circuit family such that for all n ≥ n′, the circuit B′n implements the following
algorithm on input of ρ⊗ x⊗ y:

• Sample a uniformly random z ← {0, 1}n−d(n)−c(n).

• Run Bn(ρ⊗ x⊗ y⊗ z) and measure the output in the computational basis. Let b denote the
result of this measurement.

• Output the bit b⊕ (z · z) and terminate.

(For completeness, we can assume that if n < n′ then B′n simply discards its input and outputs 0.
These cases do not matter in our analysis.) Note that B′ is an efficient family of circuits. Define
the circuit family C ′ = (C ′n)n∈N analogously with respect to the family C. Note that B′n outputs
the bit b′ if and only if its execution of Bn outputs the bit b′ ⊕ (z · z) and similarly for C ′n. Hence,
since Dn is uniformly distributed, we have that v(n) can also be expressed as

E
xB ,xC←{0,1}d(n)

yC ,yC←{0,1}c(n)

⟨gn(xB) · yB, gn(xC) · yC | (B′n⊗C ′n)(yB⊗σxB ,xC
n ⊗yC) |gn(xB) · yB, gn(xC) · yC⟩ (65)

where
σxB ,xC
n = xB ⊗An(ρn)⊗ xC . (66)

To show that v is at most negligibly more than 1
2 , it now suffices by Lemma 1 to show that for all

pairs (B′′, C ′′) of efficient (d+ qB, c)- and (qC + d, c)-circuit families, respectively, we have that

n 7→ E
xB ,xC←{0,1}d(n)

⟨gn(xB), gn(xC)| (B′′n ⊗ C ′′n)(σxB ,xC
n ) |gn(xB), gn(xC)⟩ (67)

is a negligible map.
Since (G,E) is a secure copy-protection scheme and 2−c is negligible, we have that

E
k←{0,1}κ(n)

E
xB ,xC←{0,1}d(n)

⟨fn(k, xB), fn(k, xC)| (B′′n⊗C ′′n)(xB⊗An(Gn(k))⊗xC) |fn(k, xB), fn(k, xC)⟩

(68)
is negligible in n and so, by Theorem 10 and the fact that κ ∈ ω(log),17 we can fix the keys k to
be the elements of the exponential-time ingenerable sequence (kn)n∈N and obtain that

n 7→ E
xB ,xC←{0,1}d(n)

⟨fn(kn, xB), fn(kn, xC)| (B′′n⊗C ′′n)(xB⊗An(Gn(kn))⊗xC) |fn(kn, xB), fn(kn, xC)⟩

(69)

17If κ ̸∈ ω(log), then 2−κ is non-negligible. Thus, a triplet of adversaries can break the assumed security of the
copy-protection scheme (G,E) by sampling a key universally at random and using it, with the honest generation and
evaluation algorithms, to correctly evaluate the function correctly with non-negligible probability. Indeed, they will
have a non-negligible probability of having guessed the correct key.
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is also negligible. Recalling that fn(kn, ·) = gn, this is precisely what is needed.
Note that we neglect in this proof to give an explicit construction of a (κ, 1)-circuit which

models the complete set-up and attack of the copy-protection scheme on input of a given key k,
as is technically required to apply Theorem 10. However, this construction would simply follow
the same ideas as the ones presented in the proofs of Theorem 13 and Lemma 37: The attacking
circuits from B′′ and C ′′ are placed between an initial set-up circuit, which creates and distributes
the program state and challenges, and a final referee circuit, which receives the guesses and outputs
1 if and only if they are correct. This composition would yield the necessary circuits.

Recalling that σxB ,xC
n = xB ⊗An(Gn(k

′))⊗ xC is then sufficient to complete the proof.

5.5 Instantiating our Construction of a Language with Uncloneable Advice

Our construction of a language with uncloneable advice in the previous section did not consider an
important question: Is it possible to copy-protect a sequence of functions satisfying the necessary
conditions? The following theorem gives one answer to this question.

Theorem 46. If there exists a correct and secure copy-protection scheme for a pseudorandom
function f ′ = (f ′n)n∈N with outputs of super-logarithmic length, then there exists a sequence of
maps f = (fn)n∈N satisfying the assumptions of Theorem 45.

Before proving this theorem, we recall the following result from [CLLZ21]. It establishes a set
of sufficient conditions, which we do not formalize in this work, for the copy-protection of a certain
construction of pseudorandom functions presented in that work. By the previous theorem, it follows
that these are also sufficient conditions for the existence of a language with uncloneable advice.

Theorem 47 ([CLLZ21]). Assuming the existence of post-quantum indistinguishable obfuscation,
one-way functions, and compute-and-compare obfuscation for the class of unpredictable distri-
butions, there exists a secure and correct copy-protection scheme for a specific construction of
pseudorandom functions where the length of the keys, inputs, and outputs are non-constant poly-
nomials.

For completion, we recall the definition of a pseudorandom function. We will not be using
this definition in our work. Up to specifying efficient circuit families as our computational model
and restricting the domains and codomains to be sets of bit strings, this is the definition given
by Zhandry [Zha12]. In short, a keyed function is pseudorandom if, when given oracle access, it
cannot be distinguished from a truly random function.

Definition 48. A sequence of maps f = (fn : {0, 1}κ(n) × {0, 1}d(n) → {0, 1}c(n))n∈N is a pseudo-
random function if for all efficient (0, 1)-circuit families COg having access to an oracle computing
maps of the form g : {0, 1}d(n) → {0, 1}c(n) it holds that

λ 7→
∣∣∣∣Eg ⟨1|COg

n (ε) |1⟩ − E
k∈{0,1}κ(n)

⟨1|COf(k,·)
n |1⟩

∣∣∣∣ (70)

is a negligible function and where we understand Eg to represent the expectation over the uniformly
random choice of a map g : {0, 1}d(n) → {0, 1}c(n). Moreover, we require that there exists an efficient
circuit family F such that Fn(k ⊗ x) = fn(k, x) for all n ∈ N and that κ be efficiently computable.

Note that the PRF f ′ assumed in Theorem 46 do not necessarily satisfy the first condition of
Theorem 45, which is to say that there is no guarantee that d(n) + c(n) will eventually always be
strictly smaller than n. In fact, this is never satisfied for the PRF considered in [CLLZ21]. Thus,
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we need to show that we can “slowdown” the growth of this value, while keeping the correctness
and, more importantly, the security of the scheme. The way we will do this is by repeating certain
elements of the sequence f ′ = (f ′n)n∈N multiple times in succession to obtain a new sequence of
maps f = (fn)n∈N. This will be parametrized by a re-indexing map γ : N → N which will, in
general, not be injective and where fn = f ′γ(n). In some sense, γ “slows down” the rate of growth
of the security parameter for the maps. The content of the following lemma establishes conditions
where this transformation preserves correctness and security.

Lemma 49. Let (G,E) be a copy-protection scheme for a sequence of maps f , as defined in
Equation (30), which is correct and secure and where 2−c is a negligible map. Let γ : N → N be
a non-decreasing computable map in Ω(λrl) and O(λru) for some rl, ru ∈ R+. Let Gγ = (Gγ

λ =
Gγ(λ))λ∈N, E

γ = (Eγ
λ = Eγ(λ))λ∈N, and f

γ = (fγλ = fγ(λ))λ∈N. Then, (G
γ , Eγ) is a copy-protection

scheme for fγ which is correct and secure.
Moreover, 2−c◦γ is also negligible, as it is simply 2−c ◦ γ and γ ∈ Ω(λrl).

Proof. First, note that since γ is efficiently computable and upper-bounded by a polynomial, as
it is in O(λru), then Gγ and Eγ are efficient circuit families. The correctness of (Gγ , Eγ) follows
trivially from the correctness of (G,E) and the fact that the map η ◦γ is negligible if η is negligible
as γ ∈ Ω(λrl). We move on to showing the security.

Let (A′, B′, C ′) be an attack against (Gγ , Eγ). We construct an attack (A,B,C) against the
original scheme (G,E) as follows. For completion, assume we have an existing attack (Ã, B̃, C̃)
against (G,E). The specifics of this attack do not matter for this proof; it will only be used to fill
in some gaps and ensure that all of our objects are well defined. We use n to index the security
parameter of (A′, B′, C ′) and λ to index the one of (A,B,C).

For all λ ∈ N, define Aλ as follows:

• If γ−1(λ) = ∅, then Aλ = Ãλ.

• If γ−1(λ) ̸= ∅, then Aλ is a circuit which samples uniformly at random an n′ ∈ γ−1(λ),
executes A′n′ and then gives both Bλ and Cλ a copy of n′ in addition to their respective share
of the output of A′n′ .

For all λ ∈ N, we define Bλ as follows:

• If γ−1(λ) = ∅, then Bλ = B̃λ.

• If γ−1(λ) ̸= ∅, then Bλ is a circuit which reads the n′ value received from Aλ and then
executes the B′n′ circuit on the remainder of the input received from Aλ.

The Cλ circuits are defined analogously to the Bλ circuits. Before proceeding, we should ensure
that the (A,B,C) defined here is a triplet of efficient circuit families.

First, we show that the set γ−1(λ) is efficiently computable from λ, in the sense that there
exists a polynomial-time Turing machine which, on input of 1λ, outputs an encoding of γ−1(λ).

By our assumptions on the map γ, there exists a nγ and ku, kl ∈ R+ such that n ≥ nγ implies
that kln

rl ≤ γ(n) ≤ kunru . Thus, for any n ≥ nγ ,

n ∈ γ−1(λ) =⇒ klλ
rl ≤ γ(n) = λ ≤ kunru =⇒ (λ/ku)

1
ru ≤ n ≤ (λ/kl)

1
rl . (71)

This implies that there are at most max{nγ , (λ/kl)
1
λℓ } ∈ O(γ

1
rℓ ) values in γ−1(λ). Specifically, the

possible elements of γ−1(λ) are the non-negative integers no greater than max{nγ , (λ/kl)
1
rℓ }. Thus,
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one efficient way to compute γ−1(λ) is to simply compute γ on each of these candidate integers
and verify if the result is n. Since each computation can be done in polynomial-time and there are
at most a polynomial number of candidate values, this is an efficient computation of γ−1(λ). Note
that this reasoning also implies that

∣∣γ−1(λ)∣∣ is upper bounded by a polynomial in λ.
It then follows that the circuit families (A,B,C) described above are efficient. Indeed, checking

if γ−1(λ) is empty or not can be done efficiently. If it is empty, Aλ, Bλ and Cλ are simply circuits
which are already assumed to be from an efficient family. If γ−1(λ) is not empty, then Aλ, Bλ, and
Cλ is simply

∣∣γ−1(λ)∣∣ circuits in parallel with a minimal overhead to route the inputs to the right
circuit. Since

∣∣γ−1(λ)∣∣ is polynomially bounded, this remains efficient.
Thus, by the security of (G,E) and the fact that 2−c is negligible, there exists a negligible

function η such that

E
k←{0,1}κ(λ)

xB ,xC←{0,1}d(λ)

⟨fλ(k, xB), fλ(k, xC)| (Bλ ⊗ Cλ) (xB ⊗Aλ(Gλ(k))⊗ xC) |fλ(k, xB), fλ(k, xC)⟩ ≤ η(λ)

(72)
Let v(λ) denote the left-hand side of the above. By our construction, the attack (A,B,C) averages
multiple instances of the attack (A′, B′, C ′) when possible. More precisely, if we let v′(n) denote
the success probability of the attack (A′, B′, C ′) for the security parameter n, we have that

E
n∈γ−1(λ)

v′(n) = v(λ) ≤ η(λ) (73)

if γ−1(λ) ̸= ∅. In particular, this implies that v′(n) ≤
∣∣γ−1(γ(n))∣∣ · η ◦ γ(n). By our assumption on

the map γ, γ(n) is upper bounded by a polynomial in n, which by our previous remarks also implies
that

∣∣γ−1(γ(n))∣∣ is upper bounded by a polynomial in n. Since γ is in Ω(nrl) and is non-decreasing,
we have that η ◦ γ is negligible. It follows that v′(n) is negligible, which is the desired result.

While the previous lemma gives sufficient condition for when a “γ slowdown” maintains the
security and correctness guarantees of copy-protected functions, it does not establish the existence
of a suitable γ. This is done, implicitly, by the following lemma.

Lemma 50. Let g : N → N be a map such that g ∈ O(nd) for a d ∈ N+. Then, there exists an
efficiently computable non-decreasing map f : N→ N such that g ◦ f is eventually strictly smaller
than n and f ∈ Ω(λr) ∩ O(λr) for a r ∈ R+.

Proof. Let k, ng ∈ N be such that n ≥ ng =⇒ g(λ) ≤ knd. Now, let f be defined by

f(n) =

{
0 if n < d

√
kn2dg⌊

1
d√
k
n

1
2d

⌋
else.

(74)

Trivially, f is non-decreasing and efficiently computable. Then, for all n > max{ d
√
kn2dg , 1}, we

have that

g ◦ f(n) = g

(⌊
1

d
√
ku
n

1
2d

⌋)
≤ n

1
2 < n. (75)

It now remains to show that there exists an r ∈ R+ such that f ∈ Ω(λr). Note that for all

sufficiently large values of λ we have that f(λ) ≥ 1
d√
k
λ

1
2d − 1 ≥ 1

2
d√
k
λ

1
2d . Thus, f ∈ Ω(λ

1
2d ). We

similarly find that f ∈ O(λ
1
2d ).

Pulling these lemmas together, we can prove Theorem 46.
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Proof of Theorem 46. Let f ′ = (f ′n : {0, 1}κ(n) × {0, 1}d(n) → {0, 1}c(n))n∈N be the copy-protected
PRF. We know that d + c ∈ O(nr) for some r ∈ R+ else it would not be possible to efficiently
compute this PRF. Then, by Lemma 50, there exists a non-decreasing efficiently computable γ in
both Ω(λ

1
2d ) and O(λ

1
2d ) such that (c+ d) ◦ γ(n) is eventually strictly smaller than n.

Thus, by applying the transformation of Lemma 49 with this γ to f ′, we obtain a sequence of
maps f satisfying the assumptions of Theorem 45.

A Comparing Ingenerable and Martin-Löf Random Sequences

The goal of this section is to show that the concepts of ingenerable sequences and of Martin-Löf
random sequences are distinct but related. For the rest of the appendix, “ingenerable” is understood
to mean “computably ingenerable”.

• For reasonable choices of ℓ, there exists weakly ingenerable ℓ-sequences which are not ingener-
able (Theorem 51).

• For any non-constant polynomial ℓ, every Martin-Löf random sequence yields a weakly in-
generable ℓ-sequence via a natural bijection (Theorem 60).

• There exists ingenerable ℓ-sequences which do not correspond to Martin-Löf random sequences
under the same natural bijection mentioned above (Theorem 59).

For any non-constant polynomial ℓ, Figure 6 shows the relation obtained between the sets of
weakly ingenerable ℓ-sequences, ingenerable ℓ-sequences, and Martin-Löf random sequences ob-
tained from the results above.

Weakly Computably Ingenerable ℓ-sequences

Computably Ingen-
erable ℓ-sequences

Martin-Löf
Random

Figure 6: The relation between the sets of weakly computably ingenerable ℓ-sequences, ingenerable ℓ-
sequences, and Martin-Löf random sequences, via the cutℓ bijection, for any non-constant polynomial ℓ :
N→ N. All three sets are distinct, but the precise relation between ingenerable ℓ-sequences and Martin-Löf
random sequences remains unknown.

Before moving on to considering Martin-Löf randomness, we separate the notions of ingenera-
bility and weak ingenerability, except in the trivial cases where all ℓ-sequences are ingenerable.

Theorem 51. Let ℓ : N → N be a computable map not in O(log). Then, there exists a weakly
ingenerable ℓ-sequence which is not ingenerable.

Proof. Let (sn)n∈N be an ingenerable ℓ-sequence. For all n ∈ N, we define

s0n =

{
0ℓ(n) if n is even

sn if n is odd
and s1n =

{
sn if n is even

0ℓ(n) if n is odd
(76)
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We first show that at least one of (s0n)n∈N or (s1n)n∈N is not ingenerable. Aiming for a contra-
diction, assume both are ingenerable. Let (Cn)n∈N be a uniform (0, ℓ)-circuit family such that Cn

simply outputs
∣∣0ℓ(n)〉〈0ℓ(n)∣∣ for all n ∈ N. As we have assumed that both sequences are ingenerable,

there exists polynomials pb and integers ñb such that

n ≥ ñb =⇒ ⟨sbn|Cn(ε) |sbn⟩ < pb(n) · 2−ℓ(n). (77)

for both values of b ∈ {0, 1}. Taking ñ = ñ0 + ñ1 and p = p0 + p1, this implies that

n ≥ ñ =⇒ ⟨sbn|Cn(ε) |sbn⟩ < p(n) · 2−ℓ(n) (78)

for both b ∈ {0, 1}. Since at least one of s0n or s1n is always the all-zero string, which precisely what
is produced by Cn, this implies that

n ≥ ñ =⇒ 1 < p(n) · 2−ℓ(n) (79)

from which we can conclude that ℓ ∈ O(log), a contradiction. Hence, at least one of the two
sequences is not ingenerable.

Next, we show that (sbn)n∈N is weakly ingenerable for both values of b ∈ {0, 1}. Since (sn)n∈N
is ingenerable, there exist a polynomial p such that for any uniform (0, ℓ)-circuit family (Cn)n∈N
there is a ñ ∈ N such that

n ≥ ñ =⇒ ⟨sn|Cn(ε) |sn⟩ < p(n) · 2−ℓ(n). (80)

Thus, for both b ∈ {0, 1},
⟨sbn|Cn(ε) |sbn⟩ < p(n) · 2−ℓ(n) (81)

infinitely often. Hence, (sbn)n∈N is weakly ingenerable.

A.1 Preliminaries

We review here the basics of Kolmogorov complexity and Martin-Löf randomness as well as es-
tablish some extra notation pertaining to bit strings. We generally follow the textbook of Li and
Vitányi [LV19].

A.1.1 More on Bit Strings and the cutℓ Map

We denote by {0, 1}∞ be the set of all infinite sequences of bits. When we wish to emphasize that
a sequence of 0’s and 1’s be interpreted as a bit string and not a number, we will write them as
sequences of 0’s and 1’s.

For a Turing machine T, we let ⟨T⟩ ∈ {0, 1}∗ denote a reasonable binary encoding of T. The
specifics of this encoding are not needed for this work. Similarly, for any n ∈ N we let ⟨n⟩ ∈ {0, 1}∗
denote the shortest representation of n in binary. Here, we adopt the same convention as in [LV19]
and represent the number 0 with the empty string and continue from there. Thus, ⟨0⟩ = ε, ⟨1⟩ = 0,
and ⟨3⟩ = 10. This yields a bijection between {0, 1}∗ and N as well as the relation

|⟨n⟩| = ⌊log(n+ 1)⌋ . (82)

We also define ⟨n⟩m to be the binary representation of n that is left-padded by 0’s to be of length
at least m, e.g. ⟨5⟩6 = 000100.

For any string x ∈ {0, 1}∗, we let dx be the string which repeats every bit of x twice in succession.
For example, d⟨5⟩ =d 101 = 110011.
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Let s ∈ {0, 1}∗ ∪ {0, 1}∞ be a finite or infinite string and let n,m ∈ N+ be two strictly positive
integers. If n ≤ m ≤ |s|, we let s[n,m] ∈ {0, 1}m−n+1 be the string composed precisely of the n-th
to m-th bits, inclusively, of s. Otherwise, we set s[n,m] = ε.

For any map ℓ : N → N, we denote the set of ℓ-sequences by {0, 1}∗ℓ . We now define a map
cutℓ : {0, 1}∞ → {0, 1}∗ℓ . Intuitively, cutℓ will “cut” an infinitely sequence s ∈ {0, 1}∞ into finite
strings sλ of length ℓ(λ). The string s0 will be first ℓ(0) bits of s, the string s1 will be the next ℓ(1)
bits, s2 will be the next ℓ(2) bits, and so on and so forth. If the map ℓ is non-zero infinitely
often, then cutℓ is a bijection and the inverse map cut−1ℓ : {0, 1}∗ℓ → {0, 1}∞ is simply the infinite
concatenation, in order, of all strings in a sequence (sλ)λ∈N. More formally, let L : N → N be
defined by n 7→

∑n
i=0 ℓ(i). Then, cutℓ(s) = (sn)n∈N where

sn =

{
s[1,L(0)] if n = 0

s[1+L(n−1),L(n)] else.
(83)

A.1.2 Kolmogorov Complexity

We now move on to defining the Kolmogorov complexity of a string. This is also known as the
plain Kolmogorov complexity when we wish to explicitly distinguish it from other variations of this
definition, such as the prefix Kolmogorov complexity.18

Definition 52. Let T be a Turing machine. The Kolmogorov complexity of a string x ∈ {0, 1}∗
with respect to the machine T, denoted KT(x), is defined by

KT(x) =

{
∞ if T(y) ̸= x for all y ∈ {0, 1}∗

min {|y| : T(y) = x} else.
(84)

If U is a universal Turing machine, in the sense that U (⟨T⟩, x) = T(x) for all strings x ∈ {0, 1}∗
where T(x) halts, then there exists a constant c ∈ N such that KU(x) ≤ KT(x) + c. Indeed, it
suffices to take c = |⟨T⟩|. It follows that for any two universal Turing machines U and U′ there exists
a constant c such that KU(x) ≤ KU′(x) + c for all strings x ∈ {0, 1}∗.

With the above in mind, we fix for the remainder of this section a universal Turing machine U

and set K = KU. Up a to an additive constant, the particular choice of U does not matter.
As an immediate result, we note that there exists a constant c such that K(x) ≤ |x|+ c for all

strings x ∈ {0, 1}∗. Indeed, let Id be the Turing machine which immediately halts. We then have
that U(⟨Id⟩, x) = x for all x ∈ {0, 1}∗ and so K(x) ≤ |⟨Id⟩|+ |x|.

Finally, we also define the conditional Kolmogorov complexity. In short, we assume here that
the Turing machine also has access to another string z when trying to compute x and the length
of z is not counted in the resulting measure of complexity.

Definition 53. Let T be a Turing machine. The Kolmogorov complexity of a string x ∈ {0, 1}∗
conditioned on z ∈ {0, 1}∗ with respect to T is defined by

KT(x|z) =

{
∞ if T(dz, 01, y) ̸= x for all y ∈ {0, 1}∗

min{|y| : T(dz, 01, y) = x} else.
(85)

Note that the double encoding of z followed by 01 allows the Turing machine to unambiguously
distinguish between z and y.

We again fix a single universal Turing machine U and always measure the conditional Kolmogorov
complexity with respect to this machine.

18Note that all our references on this topic use C for the plain Kolmogorov complexity and reserve K for the prefix
Kolmogorov complexity. We use K for the Kolmogorov complexity as we typically use C to denote circuits.
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A.1.3 Martin-Löf Random Sequences

A very succinct characterization of Martin-Löf randomness can be given in terms of prefix Kol-
mogorov complexity. We take this characterization as our definition. We do not formally define
prefix Kolmogorov complexity as we will not directly be using this characterization, but it roughly
corresponds to restricting the plain Kolmogorov complexity to only consider Turing machines whose
behaviours are completely characterized by their actions on a prefix set.

Definition 54 ([LV19, Theorem 3.5.1]). A string w ∈ {0, 1}∞ is Martin-Löf random if there exists
a constant c such that the prefix Kolmogorov complexity of w[1,n] is at least n− c for all n ∈ N.

At a high level, this characterization captures the idea that there should be a limit on how much
the prefixes of a Martin-Löf random sequence can be compressed. For our needs, the following two
theorems will be sufficient. The first, due to Miller and Yu [MY08] (although we use a restricted
version of the formulation given in [LV19, Theorem 2.5.4]) is expressed in terms of the conditional
plain Kolmogorov complexity. The second is due to Schnorr [Sch71] and is based on the concept
of computable martingales.19

Theorem 55. For all Martin-Löf random w ∈ {0, 1}∞, there exists a c ∈ N such that for all n ∈ N

K(w[1:n]|⟨n⟩) ≥ n− 2 log(n)− c. (86)

Theorem 56. Let f : {0, 1}∗ → N be a computable map such that for all x ∈ {0, 1}∗ we have that

f(x) =
f(x, 0) + f(x, 1)

2
. (87)

Any w ∈ {0, 1}∞ such that lim supn→∞ f(w[1:n]) =∞ is not Martin-Löf random.

A.2 Ingenerable Sequences Need Not be Martin-Löf Random

We prove in this section Theorem 59 which states that, under the action of the cut−1ℓ bijection
for a computable map ℓ, ingenerable sequences may not yield Martin-Löf random sequences. The
core of our argument is that we can find ingenerable sequences such that their concatenation yields
an infinite sequence of bits with 0’s at infinitely many locations which can be computed. This
is sufficient to ensure non-Martin-Löf randomness as it will allow us to construct a computable
martingale, in the sense of Theorem 56, who’s value will grow to infinity.

In practice, we will use the following corollary of Theorem 56.

Corollary 57. Let L : N→ N+ be a computable strictly monotone map. If a string s ∈ {0, 1}∞ is
such that s[L(i):L(i)] = 0 for all i ∈ N, then s is not Martin-Löf random.

Proof. Consider a Turing T machine which, on input of a string x ∈ {0, 1}∗, implements the
following algorithm:

1. Initialize a counter v with value 1 and a counter i with value 0.

2. Compute L(i). If L(i) > |x|, then output the value of v and halt. Else:

(a) Check if x[L(i),L(i)] is 0. If it is, double the value of v. If it is not, set v to be 0.

19Slightly relaxing the conditions on f in this theorem, namely only requiring it to be weakly computable and letting
its codomain be R+

0 , actually yields a characterization of non-Martin-Löf randomness.
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(b) Increment i by setting it to i+ 1 and return to step 2.

Note that T halts on every input since L is strictly monotone. Let f : {0, 1}∗ → N be the function

computed by T and note that f(x) = f(x,0)+f(x,1)
2 for all strings x ∈ {0, 1}∗. By Theorem 56, it

suffices to show that limn→∞ f(s0:n) = ∞ to obtain that s is not Martin-Löf random. To do this,
we simply note that

f(s[1,n]) = 2|L(N)∩[n]| (88)

and that since |L(N)| is infinite, this value tends to infinity as n grows. Indeed, consider the value of
the register v maintained by the Turing machine described above when it is run on s[1:n]. Step 2(a)
will be executed exactly |L(N) ∩ [n]| times. By hypothesis, s[L(i),L(i)] is always 0 and thus the value
of v is doubled every time. This yields the desired result.

At this point, it essentially suffices to argue that there are ingenerable sequences with infinitely
many zeros at precisely computable locations.

Lemma 58. Let (sλ)λ∈N be an ingenerable ℓ-sequence. For all λ ∈ N, let s′λ be sλ, except with the
first bit replaced by 0, unless sλ = ε in which case no change is made. Then the sequence (s′λ)λ∈N
is also ingenerable.

Proof. Let (C ′λ)λ∈N be a uniform (0, ℓ)-circuit family. (If no such family exists, such as if ℓ is
uncomputable, then the proof is complete.) For all λ ∈ N, let Cλ be the circuit which first runs
the circuit C ′λ and then replaces the first qubit with the maximally mixed state, unless C ′λ is
a (0, 0)-circuit in which case Cλ = C ′λ. Clearly, (Cλ)λ∈N is also a uniform (0, ℓ)-circuit family. Note
that

1

2
⟨s′λ|C ′λ(ε) |sλ⟩ ≤ ⟨sλ|Cλ(ε) |sλ⟩ (89)

since, conditioned on Cλ correctly outputting the last ℓ(λ) − 1 bits of sλ, C
′
λ has a probability 1

2
of outputting s′λ. Note that if ℓ(λ) = 0, the inequality still holds as the left-hand side is 1

2 and the
right hand side is 1. Now, since (sλ)λ∈N is ingenerable, there exists a polynomial p such that

⟨sλ|Cλ(ε) |sλ⟩ ≤ p(λ) · 2−ℓ(λ) (90)

for all sufficiently large values of λ. Combining this with the previous inequality yields the desired
result as 2p is a polynomial.

We now pull everything together to state and prove the theorem.

Theorem 59. Let ℓ : N → N be a computable function which is nonzero infinitely often. Then,
there exists an ingenerable ℓ-sequence (sλ)λ∈N such that cut−1ℓ ((sλ)λ∈N) is not Martin-Löf random.

Proof. By Theorem 9, there exists an ingenerable ℓ-sequence (sλ)λ∈N and by Lemma 58 we can
assume that the first bit of every non-empty sλ in this sequence is 0. Let N = {n0, n1, n2, . . .} ⊆ N
be the set of values on which ℓ is nonzero. We index the values of N such that nj < nj+1 for
all j ∈ N. Now, define the map L : N→ N+ by

i 7→ 1 +
i−1∑
j=0

ℓ(nj). (91)

and note that it is computable and strictly increasing. By construction, the L(i)-th bit of cut−1ℓ (sλ)
is 0 for all i ∈ N. Indeed, L(i) identifies the location where the first bit of sni will be situated in the
infinite string cut−1ℓ ((sλ)λ∈N). Thus, by Corollary 57, this string is not Martin-Löf random.
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A.3 Martin-Löf Random Sequences give Weakly Ingenerable Sequences

The key observation in this section is that if we already given the description of a circuit C which
generates a string s with at least some probability p, i.e.: ⟨s|C(ε) |s⟩ ≥ p, then we can describe s
with at most ≈ log

(
p−1
)
extra bits. Indeed, there are at most p−1 strings satisfying the previous

inequality and and we can identify s by by specifying it’s location, in lexicographic order, in the
set of such strings. If p is large enough, this will be shorter than |s|.

Using this idea, we can show that if cutℓ(s) = (sλ)λ∈N is not weakly ingenerable if ℓ is a
polynomial, as in that case all but some initial set of segments of s can be compressed by the above
idea. Moreover, the C circuits can in fact be taken from a uniform family, which is to say that they
can all be generate by a single Turing machine and thus they only have a constant contribution to
the Kolmogorov complexity. This, and a few extra technical considerations, is enough to show that
s is not Martin-Löf random. Taking the contrapositive yields the following theorem.

Theorem 60. Let s ∈ {0, 1}∞ be a Martin-Löf random sequence and let ℓ : N→ N be a polynomial.
Then, cutℓ(s) is weakly ingenerable.

Proof. Assume that ℓ(λ) is not constant. If it was, then cutℓ(s) would be trivially ingenerable, and
hence weakly ingenerable, by virtue of ℓ ̸∈ ω(log) and the proof would be done. Note that since ℓ
is never negative, this implies that limλ→∞ ℓ(λ) =∞.

Aiming for a contradiction, assume that the ℓ-sequence cutℓ(s) = (sλ)λ∈N is not weakly ingener-
able. Thus, there exists a uniform family of (0, ℓ)-circuits (Cλ)λ∈N such that

⟨sλ|Cλ(ε) |sλ⟩ ≥ (p(λ) + 2) · 2−ℓ(λ) where p(λ) = 2ℓ(λ+ 1)3 (92)

for all but finitely many values of λ. Let C be a Turing machine which generates this circuit family.
Our goal is now to describe a Turing machine GEN and strings an ∈ {0, 1}∗ such that for all

constants c, there exists an nc such that

GEN(d⟨nc⟩, 01, anc) = s[1,nc] and |anc | < nc − 2 log(nc)− c (93)

Taking the contrapositive of Theorem 55, this is sufficient to conclude that s is not Martin-Löf
random, yielding our contradiction.

We construct GEN from a few subroutines, which we will also describe as Turing machines. First,
let SIMC be a Turing machine which, on input of ⟨λ⟩ and a string y ∈ {0, 1}ℓ(λ), computes the value
of ⟨y|Cλ(ε) |y⟩ within an additive error of 2−ℓ(λ). Next, let SETC be a Turing machine which on
input of ⟨λ⟩ implements the following algorithm:

1. Initialize an empty set S.

2. Iterating over all strings y ∈ {0, 1}ℓ(λ), do the following:

(a) Run SIMC(d⟨λ⟩, 01, y).
(b) If this determines that ⟨y|Cλ(ε) |y⟩ ≥ (p(λ) + 1) · 2−ℓ(λ), add y to S.

3. Output a description of the set S and halt.

Let’s establish a bit of notation for the sets S computed by SETC and examine some of their
properties. This will also allow us to define the strings an before moving on to describing GEN.

For all λ ∈ N, let Sλ be the set ultimately computed by SETC(⟨λ⟩). Note that, by the additive
error bound we imposed on SIMC, this set contains every y satisfying ⟨y|Cλ(ε) |y⟩ ≥ (p(λ)+2)·2−ℓ(λ)
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and none satisfying ⟨y|Cλ(ε) |y⟩ < p(λ) · 2−ℓ(λ). This implies that for every λ such that p(λ) ̸= 0,
the set Sλ contains at most p(λ)−1 · 2ℓ(λ) elements and that sλ ∈ Sλ for all but finitely many values
of λ. If sλ ∈ Sλ, we say that sλ is compressible. If sλ is compressible, we let rλ ∈ N denote it’s
position, in the lexicographic order, among the elements of Sλ. We let nλ be the maximal number
of bits required to express rλ. If p(λ) ̸= 0, then

nλ = |⟨|Sλ|⟩| ≤ log(|Sλ|+ 1) ≤ log(2|Sλ|) ≤ log

(
2 · 2

ℓ(λ)

p(λ)

)
= ℓ(λ)− 3 log(ℓ(λ+ 1)). (94)

We let
λ̃ = max {{λ : sλ ̸∈ Sλ} ∪ {λ : p(λ) = 0}} (95)

be the largest integer such that sλ̃ is not compressible or that ℓ(λ̃) = 0. Recall that ℓ tends to

infinity and so such a λ̃ exists. If λ > λ̃, then sλ ∈ Sλ and it takes at most ℓ(λ) − 2 log(ℓ(λ+ 1))
bits to give its location in the set.

We now define an for all n ∈ N. Let L : N→ N be defined by λ 7→
∑λ

i=0 ℓ(i) and let λn ∈ N be
the largest integer such that L(λn) ≤ n, if such an integer exists. In other words, λn is the number
of complete strings from the sequence (sλ)λ∈N which appear in s[1:n]. Then,

an =

{
s[1,n] if n ≤ L(λ̃)(
s[1,L(λ̃)], ⟨rλ̃+1⟩nλ̃+1

, ⟨rλ̃+2⟩nλ̃+2
, . . . , ⟨rλn⟩nλn

, s[L(λn)+1,n]

)
else.

(96)

In general (i.e.: the second case in the above equation), an includes the following information:

• A prefix s[1,L(λ̃)] of s[1,n] which may not be compressible by our method.

• For every sλ which appears in whole in s[1,n] and which can be compressed by our method, an
includes the value of rλ in binary and padded to a predictable length.

• The suffix s[L(λn)+1,n], representing the incomplete part of sλn+1 which is present in s[1,n].

For all n such that λn > λ̃ we have that

|an| = L(λ̃) +

 λn∑
λ=λ̃+1

nλ

+ (n− L(λn))

≤ L(λ̃) +

 λn∑
λ=λ̃+1

ℓ(λ)− 3 log(ℓ(λ+ 1))

+ (n− L(λn))

≤ n−
λn∑

λ=λ̃+1

3 log(ℓ(λ+ 1))

= n−
λn+1∑
λ=λ̃+2

3 log(ℓ(λ))

≤ n− 3 log

 λn+1∑
λ=λ̃+2

ℓ(λ)


= n− 3 log

(
L(λn + 1)− L(λ̃+ 1)

)

(97)

52



Using the facts that n < L(λn + 1) and that if x ∈ N and y ≥ x+ 1 then log(y − x) ≥ log(y)− x,
we obtain

|an| ≤ n− 3 log(L(λn + 1)) + 3L(λ̃+ 1)

≤ n− 3 log(n) + 3L(λ̃+ 1)

= n− 2 log(n) + 3L(λ̃+ 1)− log(n)

(98)

Since 3L(λ̃+ 1) is a constant, we have that

lim
n→∞

3L(λ̃+ 1)− log(n) = −∞ (99)

and so for every constant c there exists an nc ∈ N such that |anc | < nc − 2 log(nc)− c.

B Supplementary Proofs

B.1 Proof of Lemma 11

Before proving Lemma 11, we highlight a small technical fact. If a subset S of a finite set X is
constructed by iterating over all elements x ∈ X and including this element in S with probability
px, independently of all other choices, then the expected size of S is

∑
x∈X px.

Fact 61. Let X be a finite set and, for every x ∈ X , let px ∈ [0, 1] be a real number. Let S be a
random variable distributed on P(X ) such that, for all Y ∈ P(X )

Pr [S = Y] =

(∏
x∈Y

px

)
·

 ∏
x∈Y\S

1− px

 . (100)

Then, E |S| =
∑

x∈X px.

Proof. For any Y ∈ X , let δY : X → {0, 1} be the characteristic function for the set Y. We can
then compute E |S| as∑
Y∈P(X )

|Y| · Pr [S = Y] =
∑
Y∈P(X )

∑
x∈X

δY(x) · Pr [S = Y] =
∑
x∈X

∑
Y∈P(X )

δY(x) · Pr [S = Y] (101)

which is precisely
∑

x∈X px, the desired result, as
∑
Y∈P(X ) δY(x) · Pr [S = Y] = px.

We can now prove the lemma.

Proof of Lemma 11. Let S be the random variable distributed on P ({0, 1}n) which models the
contents of the set maintained by the circuit C̃ once it terminates step 2. Note that

Pr [S = X ] =

(∏
x∈X
⟨1|C(x) |1⟩

) ∏
x∈{0,1}n\X

1− ⟨1|Cx(x) |1⟩

 . (102)

We see that

⟨s| C̃(s) |s⟩ ≥
∑

X∈P({0,1}n)
s∈X

1

|X |
· Pr [S = X ] (103)

where the inequality is obtained by neglecting the case where S is empty.
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Next, let S ′ be the random variable distributed on P ({0, 1}n \ {s}) such that

Pr
[
S ′ = X

]
=

(∏
x∈X
⟨1|C(x) |1⟩

) ∏
x∈({0,1}n\{s})\X

1− ⟨1|Cx(x) |1⟩

 (104)

and note that if s ∈ X then Pr[S = X ] = ⟨1|C(s) |1⟩ ·Pr[S ′ = X \ {s}] for any X ∈ P({0, 1}n). We
then have that ∑

X∈P({0,1}n)
s∈X

1

|X |
· Pr [S = X ] =

∑
X∈P({0,1}n)

s∈X

1

1 + |X \ {s}|
· Pr [S = X ]

=
∑

X∈P({0,1}n)
s∈X

⟨s|C(s) |s⟩
1 + |X \ {s}|

· Pr
[
S ′ = X \ {s}

]

=
∑

X ′∈P({0,1}n\{s})

⟨s|C(s) |s⟩
1 + |X ′|

· Pr
[
S ′ = X ′

]
= ⟨s|C(s) |s⟩ · E 1

1 + |S ′|

≥ ⟨s|C(s) |s⟩ · 1

1 + E |S ′|

= ⟨s|C(s) |s⟩ · 1

1 +
∑

x∈{0,1}n\{s} ⟨1|C(x) |1⟩

(105)

where the inequality is obtained by Jensen’s inequality and the expectation is evaluated by Fact 61.
Combining this with Equation (103) yields the desired result.
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